ON KŘÍŽEK'S DECOMPOSITION OF A POLYHEDRON INTO CONVEX COMPONENTS AND ITS APPLICATIONS IN THE PROOF OF A GENERAL OSTROGRADSKIJ'S THEOREM

Alexander Ženíšek

Department of Mathematics of FME, BUT Technická 2, 616 69 Brno, Czech Republic zenisek@fme.vutbr.cz

I encountered Professor Křížek for the first time when he defended his CSc.-degree; I was a member of the committee. One of his results fascinated me. It has the following form:

Křížek's lemma (on a decomposition of a polygon and a polyhedron into convex components)

- a) For every polygon $\overline{\Omega}$ there exists a finite number of convex polygons with mutually disjoint interiors the union of which is $\overline{\Omega}$.
- b) For every polyhedron $\overline{\Omega}$ there exists a finite number of convex polyhedrons with mutually disjoint interiors the union of which is $\overline{\Omega}$.

Definition. a) By a polygon we understand every nonempty, bounded and closed domain in \mathbb{R}^2 the boundary of which can be expressed as a union of a finite number of segments.

b) By a polyhedron we understand every nonempty, bounded and closed domain in \mathbb{R}^3 the boundary of which can be expressed as a union of a finite number of polygons with mutually disjoint interiors.

Proof of Křížek's lemma. The proof is presented in the three-dimensional case; this part of Lemma will play a fundamental role in the proof of the Gauss–Ostrogradskij theorem. In the two-dimensional case the proof is analogous but simpler.

The proof is a part of the proof of a more general theorem (see [2]). However, because of the importance of the lemma we reproduce the corresponding part of Křížek's proof in a slightly extended form.

Let $\overline{\Omega}$ be an arbitrary polyhedron and let π^1, \ldots, π^m be polygons the union of which is the boundary $\partial\Omega$. Let $\varrho^1, \ldots, \varrho^m$ be such planes that $\pi^i \subset \varrho^i, i = 1, \ldots, m$. It may happen that some of these planes coincide. Without loss of generality let us

assume that $\varrho^1, \ldots, \varrho^k$ $(k \leq m)$ are mutually different planes and each ϱ^i $(k < i \leq m)$ belongs to the set $\{\varrho^1, \ldots, \varrho^k\}$. Let $\Omega_1, \ldots, \Omega_r \subset R^3$ be all connected components of the set $\overline{\Omega} \setminus \bigcup_{i=1}^k \varrho^i$ (i.e., the connected components which arise after "cutting up" the polyhedron $\overline{\Omega}$ by the planes ϱ^i). The number of these components is finite (at most 2^k). We assert that $\overline{\Omega}_j$ $(j = 1, \ldots, r)$ are the sought convex polyhedrons. First we show that Ω_j are open sets. As $\partial \Omega \subset \bigcup_{i=1}^k \varrho^i$ we have

$$\overline{\Omega} \setminus \bigcup_{i=1}^k \varrho^i = \Omega \setminus \bigcup_{i=1}^k \varrho^i.$$

This set is open because Ω is an open set and $\bigcup_{i=1}^{k} \varrho^{i}$ is a closed set, and components of an open set are open.

Further we prove the convexity of $\overline{\Omega}_j$. Let $j \in \{1, \ldots, r\}$ be an arbitrary fixed integer. Each plane ϱ^i $(i = 1, \ldots, k)$ divides the space \mathbb{R}^3 into two half-spaces. Let us denote by Q^i the closed half-space, which is bounded by the plane ϱ^i and which contains $\overline{\Omega}_j$, and let us denote $M := \bigcap_{i=1}^k Q^i$. Then we have $\overline{\Omega}_j \subset M$. The converse inclusion will be proved by contradiction. Let us assume that there exists a point $P \in M \setminus \overline{\Omega}_j$. As $\overline{\Omega}_j$ is a closed set we have $R = \operatorname{dist}(P, \overline{\Omega}_j) > 0$; this means that

$$M \setminus \overline{\Omega}_j \supset M \cap \mathcal{S}_{\mathcal{R}}(\mathcal{P}) \neq \emptyset,$$

where $S_{\mathcal{R}}(\mathcal{P})$ is an open ball of the radius R and with the center at P. Let $X \in M \cap S_{\mathcal{R}}(\mathcal{P})$ be a point that does not belong to any plane $\varrho^1, \ldots, \varrho^k$ and let Y be an arbitrary interior point of $\overline{\Omega}_j$ (such a point certainly exists because Ω_j is a domain). Then inside the segment \overline{XY} there exists such a point Z that $Z \in \partial \Omega_j$ (because $X \notin \overline{\Omega}_j$). As Z is a boundary point of $\overline{\Omega}_j$ there exists a plane ϱ^s $(1 \leq s \leq k)$ such that $Z \in \varrho^s$ and this plane separates the points X a Y because $X \notin \varrho^s$, $Y \notin \varrho^s$. This implies that $X \notin Q^s$, which contradicts the fact that $X \in M \subset Q^s$. Hence

$$\overline{\Omega}_j = \bigcap_{i=1}^k Q^i$$

and this intersection is evidently bounded and has at least one interior point. In other words, $\overline{\Omega}_j$ is a convex polyhedron.

Further, the definition of components Ω_j (j = 1, ..., r), i.e., the relation

$$\overline{\Omega} \setminus \bigcup_{i=1}^k \varrho^i = \bigcup_{j=1}^r \Omega_j,$$

implies immediately that $\overline{\Omega} = \bigcup_{j=1}^{r} \overline{\Omega}_{j}$.

The rest of the paper is devoted to a very important application of Křížek's lemma – the proof of a general form of the Gauss-Ostrogradskij theorem.

1. The elementary form of the Gauss–Ostrogradskij theorem

Definition 1. a) A bounded domain $\Omega \subset \mathbb{R}^3$ is called *elementary with respect to* the coordinate plane (x, y) if every straight-line p parallel to the z-axis and such that $p \cap \overline{\Omega} \neq \emptyset$ intersects the boundary $\partial \Omega$ at two points or has with $\partial \Omega$ a common segment which can degenerate into a point.

b) Analogously we define domains elementary with respect to the plane (x, z), or with respect to the plane (y, z).

c) A bounded domain Ω is called *elementary* if it is elementary with respect to all three coordinate planes.

Remark 1. Every bounded convex domain is elementary.

Definition 2. a) We say that a set \overline{S} is a part of a surface which is regular with respect to the coordinate plane (x, y), if the points $[x, y, z] \in \overline{S}$ satisfy

$$z = f(x, y), \quad [x, y] \in \overline{S}_{xy}$$

where \overline{S}_{xy} is a simply connected two-dimensional bounded closed domain lying in the plane (x, y) which is bounded by a simple piecewise smooth closed curve ∂S_{xy} , and $f: \overline{S}_{xy} \to \mathbb{R}^1$ is a real function continuous on \overline{S}_{xy} which has continuous first partial derivatives $f_x \equiv \frac{\partial f}{\partial x}$, $f_y \equiv \frac{\partial f}{\partial y}$ in S_{xy} (where the symbol S_{xy} denotes the interior of \overline{S}_{xy} , i.e., $S_{xy} = \overline{S}_{xy} \setminus \partial S_{xy}$; these derivatives can be unbounded in S_{xy}). The closed domain \overline{S}_{xy} is called the orthogonal projection of the part \overline{S} onto the plane (x, y). b) Similarly we say that a set \overline{S} is a part of a surface which is regular with respect to the coordinate plane (x, z) (or (y, z)), if the points $[x, y, z] \in \overline{S}$ satisfy

$$y = g(x, z), \quad [x, z] \in \overline{S}_{xz},$$

or

$$x = h(y, z), \quad [y, z] \in \bar{S}_{yz},$$

where the closed domains \overline{S}_{xz} , \overline{S}_{yz} and the functions $g: \overline{S}_{xz} \to \mathbb{R}^1$, $h: \overline{S}_{yz} \to \mathbb{R}^1$ have analogous properties as the closed domain \overline{S}_{xy} and the function $f: \overline{S}_{xy} \to \mathbb{R}^1$. The closed two-dimensional domains \overline{S}_{xz} and \overline{S}_{yz} are called orthogonal projections of the part \overline{S} onto the planes (x, z) and (y, z).

Definition 3. We say that a part \overline{S} has property (R) if it satisfies at least one of the following three conditions:

a) the part \overline{S} is regular with respect to all three coordinate planes;

b) the orthogonal projection of the part \overline{S} onto one of the three coordinate planes has the two-dimensional measure equal to zero; the part \overline{S} is regular with respect to the remaining two coordinate planes;

c) two components of the vector $\mathbf{n}(x, y, z)$ equal zero for all points $[x, y, z] \in \overline{S}$.

Lemma 1. Let a domain Ω be elementary with respect to the plane (x, y) and let its boundary $\partial\Omega$ consist of a finite number of parts with property (R) which have mutually disjoint interiors. Then these parts can be divided into three groups with the following properties:

a) The union of parts belonging to the first group forms a part \bar{D}^1 whose points [x, y, z] satisfy the equation

$$z = z_1(x, y), \quad [x, y] \in \bar{D}^1_{xy},$$
 (1)

where z_1 is a continuous function.

b) The union of parts belonging to the second group forms a part \overline{D}^2 whose points [x, y, z] satisfy the equation

$$z = z_2(x, y), \quad [x, y] \in \bar{D}^2_{xy},$$
(2)

where z_2 is a continuous function. At the same time we have

$$\begin{split} \bar{D}_{xy}^1 &= \bar{D}_{xy}^2, \\ z_1(x,y) &\leq z_2(x,y) \quad \forall [x,y] \in \bar{D}_{xy}^1. \end{split}$$

c) The normal vector $\mathbf{n} = (\cos \alpha, \cos \beta, \cos \gamma)$ of the parts belonging to the third group satisfies

$$\cos\gamma \equiv 0.$$

The set of the parts belonging to the third group can be empty.

Proof. The assertion is evident.

Theorem 1. Let the boundary $\partial\Omega$ of an elementary domain Ω be the union of a finite number of parts with property (*R*). Let functions *P*, *Q*, *R* be continuous on $\overline{\Omega}$ and let the derivatives $\partial P/\partial x$, $\partial Q/\partial y$, $\partial R/\partial z$ be continuous on $\overline{\Omega}$. Let the positive direction of the unit normal **n** be the direction of the outer normal. Then

$$\iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iint_{\partial \Omega} (P \, \mathrm{d}y \mathrm{d}z + Q \, \mathrm{d}x \mathrm{d}z + R \, \mathrm{d}x \mathrm{d}y). \tag{3}$$

Proof. By Lemma 1 and the Fubini theorem

$$\iiint_{\Omega} \frac{\partial R}{\partial z} dx dy dz = \iint_{D_{xy}^1} \left\{ \int_{z_1(x,y)}^{z_2(x,y)} \frac{\partial R}{\partial z} dz \right\} dx dy = \\ = \iint_{D_{xy}^2} R(x, y, z_2(x, y)) dx dy - \iint_{D_{xy}^1} R(x, y, z_1(x, y)) dx dy.$$
(4)

Owing to the orientation of the normal, we have $\cos \gamma < 0$ on D^1 and $\cos \gamma > 0$ on D^2 . Thus (4) can be rewritten in the form (where $\varepsilon_z = 1$ if $\gamma < \pi/2$ and $\varepsilon_z = -1$ if $\gamma > \pi/2$)

$$\iiint_{\Omega} \frac{\partial R}{\partial z} \, \mathrm{d}x \mathrm{d}y \mathrm{d}z = \varepsilon_z \iint_{D^2_{xy}} R(x, y, z_2(x, y)) \, \mathrm{d}x \mathrm{d}y + \varepsilon_z \iint_{D^1_{xy}} R(x, y, z_1(x, y)) \, \mathrm{d}x \mathrm{d}y.$$
(5)

As the boundary $\partial\Omega$ can be expressed as the union of the surfaces (1), (2) and the parts for which $\cos \gamma = 0$, the right-hand side of (5) is equal to the surface integral $\iint_{\partial\Omega} R \, dx dy$. Hence

$$\iiint_{\Omega} \frac{\partial R}{\partial z} \, \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iint_{\partial \Omega} R \, \mathrm{d}x \mathrm{d}y. \tag{6}$$

Similarly we obtain

$$\iiint_{\Omega} \frac{\partial P}{\partial x} \, \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iint_{\partial \Omega} P \, \mathrm{d}y \mathrm{d}z,\tag{7}$$

$$\iiint_{\Omega} \frac{\partial Q}{\partial y} \, \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iint_{\partial \Omega} Q \, \mathrm{d}x \mathrm{d}z. \tag{8}$$

Summing (6)-(8), we obtain (3).

Theorem 2. Let a domain $\overline{\Omega}$ be the union of a finite number of elementary domains $\overline{\Omega}^1, \ldots, \overline{\Omega}^n$ which have mutually disjoint interiors. Let the boundary $\partial \Omega^i$ of each domain Ω^i $(i = 1, \ldots, n)$ be the union of a finite number of parts with property (R). Let functions P, Q, R be continuous on $\overline{\Omega}$ and let the derivatives $\partial P/\partial x$, $\partial Q/\partial y$, $\partial R/\partial z$ be continuous on $\overline{\Omega}$. Let the unit normal **n** of the boundary $\partial \Omega$ be oriented in the direction of the outer normal. Then

$$\iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iint_{\partial \Omega} (P \, \mathrm{d}y \mathrm{d}z + Q \, \mathrm{d}x \mathrm{d}z + R \, \mathrm{d}x \mathrm{d}y). \tag{9}$$

Proof. The assumption concerning the normal **n** enables us to orient the normal of each boundary $\partial \Omega^i$ in the direction of the outer normal of Ω^i ; hence

$$\begin{split} \iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z &= \sum_{i=1}^{n} \iiint_{\Omega^{i}} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z \\ &= \sum_{i=1}^{n} \iint_{\partial \Omega^{i}} (P \, \mathrm{d}y \mathrm{d}z + Q \, \mathrm{d}x \mathrm{d}z + R \, \mathrm{d}x \mathrm{d}y) \\ &= \iint_{\partial \Omega} (P \, \mathrm{d}y \mathrm{d}z + Q \, \mathrm{d}x \mathrm{d}z + R \, \mathrm{d}x \mathrm{d}y), \end{split}$$

because at every point $P \in \Omega$ which satisfies the relation $P \in \partial \Omega^j \cap \partial \Omega^k$ $(j \neq k)$ two opposite normals meet - one belonging to $\partial \Omega^j$ and the other to $\partial \Omega^k$.

2. A more general form of the Gauss–Ostrogradskij theorem

Verifying the assumptions of Theorem 2 concerning the domain Ω is in most cases very difficult: Let us consider, for example, a domain (the so called "cheese ball with many bubbles")

$$\bar{\Omega} = \bar{K}_0 \setminus \bigcup_{i=1}^n K_i \,,$$

where $\bar{K}_0, \bar{K}_1, \ldots, \bar{K}_n$ are balls with properties

$$\bar{K}_i \subset K_0 \quad (i=1,\ldots,n), \quad \bar{K}_i \cap \bar{K}_j = \emptyset \quad (i \neq j; \ i,j=1,\ldots,n).$$

To make the Gauss–Ostrogradskij theorem applicable in general use we must substitute its assumption concerning the domain Ω by an assumption which would enable us to check only the properties of the boundary $\partial\Omega$.

Almost every Czech mathematician knows that satisfactory proofs of Ostrogradskij's theorem are introduced in [1] and [3]. As for me, after having been acquainted with Křížek's lemma I did not seek other proofs.

Definition 4. We say that a part \overline{S} has property (R^*) (or property (R^{**})) if it satisfies conditions a)-c) (or conditions a)-d)) where a) the part \overline{S} has property (R); b) if

 $z = f(x, y), \quad y = g(x, z), \quad x = h(y, z)$

are functions appearing in the analytical expressions of the part \bar{S} with respect to the coordinate planes then at least one of the three relations $f \in C^2(\bar{S}_{xy}), g \in C^2(\bar{S}_{xz}), h \in C^2(\bar{S}_{yz})$ holds;

c) if meas₂ $S_{st} > 0$, then the boundary ∂S_{st} is piecewise of class C^2 and has no cusppoints;

d) at least one of the plane domains \bar{S}_{xy} , \bar{S}_{xz} , \bar{S}_{yz} is starlike. (A domain \bar{D} is starlike if there exists at least one point $Q \in D$ such that every half-line starting from this point intersects ∂D at just one point.)

Theorem 3 (Gauss–Ostrogradskij). Let $\overline{\Omega}$ be a three-dimensional bounded closed domain whose boundary $\partial\Omega$ is the union of a finite number of parts with property (R^*) , which have mutually disjoint interiors. Let functions

$$P, Q, R, \partial P/\partial x, \partial Q/\partial y, \partial R/\partial z$$

be continuous and bounded in a bounded three-dimensional domain Ω satisfying $\widetilde{\Omega} \supset \overline{\Omega}$. Let the unit normal **n** of the boundary $\partial \Omega$ be oriented in the direction of the outer normal of $\partial \Omega$, which exists at almost all points of $\partial \Omega$. Then

$$\iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iint_{\partial \Omega} (P \, \mathrm{d}y \mathrm{d}z + Q \, \mathrm{d}x \mathrm{d}z + R \, \mathrm{d}x \mathrm{d}y). \tag{10}$$

Sketch of the proof. In a detailed proof (see [4], or [5], Chapter 20) the theorem is first proved in the case that the parts forming $\partial\Omega$ have property (R^{**}). At the end it is shown how to change the proof when these parts have only property (R^{*}).

A) Let us choose $\delta > 0$ arbitrary but fixed ($\delta < 1$). In this part of the proof it is shown (in details see [4] or [5], Chapter 20) how to approximate a part with property (R^{**}) by a "panel-shaped" surface which consists of triangular panels whose longest side has a length which is less or equal to δ . This approximation will be constructed in such a way that if

$$\partial \Omega = \bigcup_{i=1}^{n} \bar{S}_{i}, \quad S_{i} \cap S_{j} = \emptyset \ (i \neq j)$$
(11)

is a decomposition of $\partial\Omega$ into parts with property (R^{**}) and \bar{S}_i^{δ} is a panel-shaped surface approximating \bar{S}_i , then

$$\partial\Omega^{\delta} := \bigcup_{i=1}^{n} \bar{S}_{i}^{\delta} \tag{12}$$

is a boundary of a polyhedron satisfying

$$S_i^{\mathfrak{d}} \cap S_j^{\mathfrak{d}} = \emptyset \quad (i \neq j; \ i, j = 1, \dots, n)$$

$$\tag{13}$$

and with vertices lying on $\partial \Omega$. The closed bounded three-dimensional domain with the boundary $\partial \Omega^{\delta}$ will be denoted by $\bar{\Omega}^{\delta}$.

B) As $\bar{\Omega}^{\delta}$ is a polyhedron, we can express it by Křížek's lemma in the form

$$\bar{\Omega}^{\delta} = \bigcup_{j=1}^{m} \bar{U}_j, \tag{14}$$

where $\bar{U}_1, \ldots, \bar{U}_m$ are closed convex polyhedrons. Let us orientate the normal to ∂U_j as the outer normal of \bar{U}_j $(j = 1, \ldots, m)$. Relation (14) and the proof of Theorem 2 yield

$$\iiint_{\Omega^{\delta}} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz = \sum_{j=1}^{m} \iiint_{U_{j}} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz$$
$$= \sum_{j=1}^{m} \iint_{\partial U_{j}} (P \, \mathrm{d}y \mathrm{d}z + Q \, \mathrm{d}x \mathrm{d}z + R \, \mathrm{d}x \mathrm{d}y)$$
$$= \iint_{\partial \Omega^{\delta}} (P \, \mathrm{d}y \mathrm{d}z + Q \, \mathrm{d}x \mathrm{d}z + R \, \mathrm{d}x \mathrm{d}y), \quad (15)$$

because the surface integrals over $\partial U_j \cap \partial U_k$ altogether cancel.

C) It remains to prove that

$$\lim_{\delta \to 0} \iiint_{\Omega^{\delta}} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z \quad (16)$$

and

$$\lim_{\delta \to 0} \iint_{\partial \Omega^{\delta}} (P \, \mathrm{d}y \mathrm{d}z + Q \, \mathrm{d}x \mathrm{d}z + R \, \mathrm{d}x \mathrm{d}y) = \iint_{\partial \Omega} (P \, \mathrm{d}y \mathrm{d}z + Q \, \mathrm{d}x \mathrm{d}z + R \, \mathrm{d}x \mathrm{d}y).$$
(17)

The proof of (17) is long and complicated and we refer to [4], or [5], Chapter 20.

References

- [1] Fichtengolc G. M.: The course of differential and integral calculus, part III. Fizmatgiz, Moscow, 1960 (in Russian).
- [2] Křížek M.: An equilibrium finite element method in three-dimensional elasticity. Appl. Math. 27 (1982), 46–75.
- [3] Nečas J.: Les méthodes directes en théorie des equations elliptiques. Masson, Paris/Academia, Prague 1967.
- [4] Ženíšek A.: Surface integral and Gauss-Ostrogradskij theorem from the viewpoint of applications. Appl. Math. 44 (1999), 169–241.
- [5] Zeníšek A.: Sobolev spaces and their applications in the finite element method. Brno University of Technology, VUTIUM Press, Brno, 2005, 522 pp.