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Abstract

Precession is the secular and long-periodic component of the motion of the Earth’s
spin axis in the celestial reference frame, approximately exhibiting a motion of about
50′′ per year around the pole of the ecliptic. The presently adopted precession model,
IAU2006, approximates this motion by polynomial expansions of time that are valid,
with very high accuracy, in the immediate vicinity (a few centuries) of the reference
epoch J2000.0. For more distant epochs, this approximation however quickly deviates
from reality. As a reaction to this problem, a new model, comprising very long-period
terms fitted to a numerical integration of the motion of solar system bodies on scales
of several thousand centuries, was recently published by the present author with
co-authors from France and United Kingdom in Astronomy & Astrophysics. Here
a shorter description of the new model, including a new assessment of its accuracy
and comparisons with other models, is given.

1. Introduction

The axis of rotation of the Earth is not stable in the inertial reference frame, i.e.,
among the stars. Under the dominant influence of the Moon and the Sun, it exhibits
a rather complicated motion, called precession-nutation. Its very long-periodic part,
precession, is the slow motion of the pole of Earth’s rotation around the pole of
the ecliptic. The angle between the two poles (obliquity) is approximately constant,
roughly equal to 23.5◦. Precession was known already to Hipparchos, since it causes
the growth of ecliptical longitudes of the stars by about 50′′ per year; the axis of
rotation of the Earth makes one revolution in about 26 thousand years. This motion
is however not so simple: the pole of the ecliptic itself is not stable with respect to
the stars – it exhibits so called precession of the ecliptic (formerly called planetary
precession). It is dominantly caused by the attractive forces of all bodies of the solar
system on the motion of the Earth around the barycenter of the solar system. The
axis of rotation of the Earth exhibits a motion around the moving pole of ecliptic
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Figure 1: Different models of precession in the interval ±200cy around J2000.0.

under the torques exerted by the Moon, Sun, and planets on the rotating oblate
Earth, called precession of the equator (formerly luni-solar precession), but neither
obliquity, nor the rate of precession are strictly constant.

All precession models used so far are expressed in terms of polynomial devel-
opment of time, no matter which of the many precession parameters (see below)
are used. Model IAU2006 [2] is very accurate, but usable only for a limited time
interval (several centuries around the epoch J2000); its errors rapidly increase with
longer time spans. In reality, precession represents a complicated, very long-periodic
process, with periods of hundreds of centuries. This can be seen in numerically inte-
grated equations of motion of the Earth in the solar system and its rotation [11], [12].
Fig. 1 (here reproduced from paper [11]) displays the motion of the axis of rotation
of the Earth during about 1.5 precession cycles, as given by long-term numerical in-
tegration (LT integration) and different analytical models – Lieske et al. [7], Simon
et al. [8], and two models by Capitaine et al. [2] (computed from the expansions of
precession angles ζA, θA and of direction cosines XA, YA, respectively). The position
of the axis of rotation at the basic epoch J2000.0 is the point X = Y = 0, pole of
the ecliptic is approximately in the center of the figure. The models are not graph-
ically distinguishable in the interval ±50cy around J2000, but they start to differ
significantly outside the interval ±100cy.
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We assume that precession covers only periods longer than 100 centuries; shorter
ones are included in the nutation. The goal is to find relatively simple expressions
of different precession parameters, with accuracy comparable to the IAU2006 model
near the epoch J2000.0, and lower accuracy outside the interval ±1000 years (up
to several minutes of arc at the extreme epochs ±200 thousand years). The paper
describing the new model in detail has recently been published [13]. Below is the
concise description of the model, followed by an assessment of its accuracy and
comparison with other models.

2. Numerical integration, long-term expressions of precession parameters

We used the numerically integrated values of the following four parameters

• the precession of the ecliptic PA = sin πA sinΠA, QA = sin πA cosΠA, calculated
with the Mercury 6 package by Chambers [3], and

• the general precession/obliquity pA, εA, provided by Laskar et al. [5]

to calculate time series for the other precession parameters in the interval ±200 thou-
sand years from J2000.0, with 100-year steps.

To estimate the precision of the numerical integrations above, we tested them
against the values obtained independently:

• Precession of the ecliptic PA, QA (in which relativistic effects were neglected)
was compared with the values p = sin i/2 sinΩ, q = sin i/2 cosΩ (where
i = πA is the inclination and Ω = ΠA longitude of the ascending node of the
Earth’s orbit with respect to the plane of ecliptic for J2000.0), obtained by
Laskar et al. [5] by a different method with slightly different initial values,
relativistic effects included. Obvious relations PA = 2p

√
1− p2 − q2, QA =

2q
√
1− p2 − q2 were used, and comparison showed that the differences are only

a few milliarcseconds near the epoch J2000.0 and do not exceed 20 arcseconds
at the extreme epochs. The neglected perturbations by asteroids have recently
been shown by Aljabaae and Souchay [1] to be very small - peak to peak quasi-
periodic effects in Earth’s inclination are smaller than 0.05′′, the periods are
typically shorter than 100 years.

• Similarly, the comparison between different numerical integrations of the obliq-
uity εA by Laskar et al. ([5], [6]) demonstrates that the differences do nor exceed
the level of several arcseconds at the extreme epochs.

Thus we concluded that the precision of the numerical integration, including both
numerical errors and imperfections of the model used, is sufficient for our purpose.

The central part (±1000 years from the epoch J2000.0) was then replaced by
IAU2006 values to make the new model consistent with the model accepted by the
IAU. From the values of the precession parameters PA, QA, pA and ϵA, different
precession parameters were calculated in the interval ±200 millennia from J2000.0,
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Figure 2: Precession parameters.

solving several spherical triangles depicted in Fig. 2. C◦ and C denote the positions
of the pole of ecliptic at the epochs J2000.0 and T , respectively, P◦, P are the poles
of rotation of the Earth and Υ◦, Υ vernal points at the same epochs, CIO stands for
Celestial Intermediate Origin.

We obtained first the auxiliary angles α, β, µ from the spherical triangle ΥΥ◦N:

cos β = cosΠA cos(ΠA + pA) + sinΠA sin(ΠA + pA) cos πA

sin β sinα = sinΠA sinπA (1)

sin β cosα = cosΠA sin(ΠA + pA)− sinΠA cos(ΠA + pA) cos πA

sin β sinµ = sin(ΠA + pA) sin πA

sin β cosµ = sinΠA cos(ΠA + pA)− cosΠA sin(ΠA + pA) cos πA,

then the angles η, δ by solving the triangle ΥΥ◦Pt:

cos η = sin β sin(εA + α)

sin η sin δ = cos(εA + α) (2)

sin η cos δ = − cos β sin(εA + α)
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and, from triangle Υ◦PtP◦, we got the precession angles θA, ζA:

cos θA = − sin η sin(µ+ δ − ε◦)

sin θA sin ζA = − sin η cos(µ+ δ − ε◦) (3)

sin θA cos ζA = cos η.

From the triangle P◦PtC◦ followed the precession parameters ωA, ψA:

cosωA = cos ε◦ cos θA + sin ε◦ sin θA sin ζA

sinωA sinψA = sin θA cos ζA (4)

sinωA cosψA = sin ε◦ cos θA − cos ε◦ sin θA sin ζA,

and from the triangles PtCC◦, P◦PtC◦ the parameters χA, zA:

sin εA sinχA = PA cosψA +QA sinψA

sin εA cosχA = cos πA sinωA − (PA sinψA −QA cosψA) cosωA

sin θA sin(zA + χA) = sinωA cos ε◦ − cosωA sin ε◦ cosψA (5)

sin θA cos(zA + χA) = sin ε◦ sinψA.

Instead of precession angles θA, zA, ζA we use direction cosines XA= sin θA cos ζA,
YA= − sin θA sin ζA, VA= sin θA sin zA, WA= sin θA cos zA; the angles θA, ζA and zA
exhibit large discontinuities (of about 94◦ for θA, 180

◦ for ζA and zA) at irregular
intervals: there is a change of sign approximately each 26,000 years. This makes the
long-term analytical approximation of these precession angles extremely difficult,
while the direction cosines are continuous.

The time series of all parameters calculated above were then approximated by
a cubic polynomial plus up to 14 long-periodic terms of the general form (T is the
time in centuries from J2000.0, Pi is the period and n the number of periodic terms)

a+ bT + cT 2 + dT 3 +
n∑

i=1

(Ci cos 2πT/Pi + Si sin 2πT/Pi) , (6)

so that the fit is best around J2000.0. This was assured by choosing appropriate
weights (equal to 104 in the central part and to 1/T 2 outside this interval). The peri-
ods were found beforehand using the Vańıček’s method [9], modified by Vondrák [10],
and verified with the ones found by Laskar et al. [5], [6] from much longer time se-
ries. Weighted least-squares estimation was then used to determine the sine/cosine
amplitudes of individual periodic terms.

We derived the long-term expressions of the following precession parameters,
some of them being precession angles, some direction cosines (expressed in terms of
certain precession angles):

• precession angles: pA, εA, ωA, ψA, χA, φ, γ, ψ;

• direction cosines: PA = sin πA sinΠA, QA = sin πA cosΠA, XA = sin θA cos ζA,
YA = sin θA sin ζA, VA = sin θA sin zA, WA = sin θA cos zA.

We also derived the expression for the CIO locator (the part that is due to preces-
sion), sA. All these angles are depicted in Fig. 2.
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2.1. Example

As a typical example, the long-term expressions of direction cosines of the pole
Pt, XA, YA (in arcseconds), are given below:

XA = 5453.282155 + 0.4252841T − 0.00037173T 2 − 152× 10−9T 3 +
∑

X ,

YA = −73750.930350− 0.7675452T − 0.00018725T 2 + 231× 10−9T 3 +
∑

Y ,

where the cosine/sine amplitudes of the periodic parts
∑

X ,
∑

Y are displayed in
Tab. 1. The comparisons of the long-term models of precession angles XA(top)
and YA (bottom) are shown in Fig. 3. The model and integrated values are so close
that they are graphically indistinguishable. One can readily see that the expressions
for XA, YA of IAU2006 model quickly deviate from the former ones. The behavior of
other precession parameters is similar.
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Figure 3: Long-term model of precession parameters XA, YA – new model (dotted),
integrated values (solid), and IAU2006 (dashed).

2.2. Alternative parametrization of precession matrix

Different combinations of the precession angles derived above can be used to
compute precession matrix P, necessary to transform coordinates of celestial bodies
from the fundamental epoch J2000.0 to any epoch T :

• ‘Lieske’ parametrization [7]: P = R3(−zA).R2(θA).R3(−ζA),
• ‘Capitaine’ parametrization [2]: P = R3(χA).R1(−ωA).R3(−ψA).R1(ε◦),

• ‘Williams-Fukushima’ parametrization [4]:P=R1(−εA).R3(−ψ).R1(φ).R3(γ),

in which Ri(α) denotes the rotation matrix around i−th axis by angle α. In the clas-
sical ‘Lieske’ parametrization the precession angles zA, θA, ζA can be easily expressed
in terms of direction cosines XA, YA, VA,WA. Quite naturally, all these methods
should theoretically lead to the same result.
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term C/S XA[
′′] YA[

′′] P [cy]

p C1 -819.940624 75004.344875 256.75
S1 81491.287984 1558.515853

−σ3 C2 -8444.676815 624.033993 708.15
S2 787.163481 7774.939698

p− g2 + g5 C3 2600.009459 1251.136893 274.20
S3 1251.296102 -2219.534038

p+ g2 − g5 C4 2755.175630 -1102.212834 241.45
S4 -1257.950837 -2523.969396

−s1 C5 -167.659835 -2660.664980 2309.00
S5 -2966.799730 247.850422

−s6 C6 871.855056 699.291817 492.20
S6 639.744522 -846.485643

p+ s4 C7 44.769698 153.167220 396.10
S7 131.600209 -1393.124055

p+ s1 C8 -512.313065 -950.865637 288.90
S8 -445.040117 368.526116

p− s1 C9 -819.415595 499.754645 231.10
S9 584.522874 749.045012
C10 -538.071099 -145.188210 1610.00
S10 -89.756563 444.704518
C11 -189.793622 558.116553 620.00
S11 524.429630 235.934465

2p+ s3 C12 -402.922932 -23.923029 157.87
S12 -13.549067 374.049623
C13 179.516345 -165.405086 220.30
S13 -210.157124 -171.330180
C14 -9.814756 9.344131 1200.00
S14 -44.919798 -22.899655

Table 1: Periodic terms in XA, YA.

3. Estimation of model accuracy, comparison with other models

In paper [13] the accuracy was estimated using a simple expression based on
the average uncertainty of all parameters (derived from the fit to integrated values)
and weights at different epochs. Here a rigorous formula is used, based on the full
variance-covariance matrix. The result is depicted in Fig. 4, where the accuracy of
each estimated parameter is given and compared with the one from the paper [13]. It
is clear that our previous estimate was too pessimistic – the rigorous estimate yields
much smaller uncertainties for all parameters, in some cases as much as two orders
of magnitude lower.

The comparison of the new long-term solution with other models of precession
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Figure 4: Estimated accuracy of all precession parameters.
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Figure 5: Comparison of different precession models with integrated values.

(XA and YA parameters only) is given in Figs 5 and 6. XA and YA values as com-
puted from the values of ζA, θA by Lieske et al. [7], Simon et al. [8] and Capitaine
et al. [2] (denoted as Lieske, Simon, IAU2006ζθ) and computed directly from the
XA, YA expressions of Capitaine et al. [2] and paper [13] (denoted as IAU2006XY ,
LT model) are compared with the numerically integrated values.

Fig. 5 depicts the comparison in the interval ±300 centuries from J2000.0, while
Fig. 6 shows only the central part (±10 centuries from J2000.0) at an enlarged scale.
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Figure 6: Comparison of precession models – closeup of the central part.

One can see that the direct IAU2006 expressions for direction cosines XA, YA yield
much worse results than using the expressions for ‘traditional’ precession angles ζA, θA
for more distant epochs. The new LT model is indistinguishable from the integration
at this scale, whereas all other models display deviations reaching 50 degrees for
epochs more distant than 200 centuries. Fig. 6 clearly demonstrates the correction
of precession rate, and also the quadratic term in obliquity, introduced in all models
with respect to Lieske et al. [7]. On the other hand, all models shown are consistent
with the numerically integrated precession within one arcsecond or so in the interval
±10 centuries from J2000.0.

4. Conclusions

The presently adopted IAU2006 model provides high accuracy over a few centuries
around the epoch J2000.0. For longer periods, polynomial development of precession
angles ζA, θA should be preferable to direct XA, YA expressions. More than five
thousand years from the fundamental epoch J2000.0 the model rapidly goes away
from reality. The new model of precession, developed in paper [13] and valid over
±200 millennia, is presented. Its accuracy is comparable to IAU2006 model in the
interval of several centuries around J2000.0, and it fits the numerically integrated
position of the pole for longer intervals, with gradually decreasing accuracy (several
arcminutes ±200 thousand years away from J2000.0). The estimated accuracy, as
given in paper [13], is too pessimistic.
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