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Abstract

The strong version of the Poincaré recurrence theorem states that for any prob-
ability space (Ω,S, P ), any P -measure preserving transformation T : Ω → Ω and
any A ∈ S almost every point of A returns to A infinitely many times. In [8] (see
also [4]) the theorem has been proved for MV-algebras of some type. The present
paper contains a remarkable strengthening of the result stated in [8].

1. Introduction

The Poincaré recurrence theorem [5] has been proved for Boolean algebras [7],
topological spaces [2] and for MV-algebras of some types in [8]. Recall that
MV-algebras play an analogous role in multivalued logics as Boolean algebras in two
valued logics. Any MV-algebra can be simply characterized by the help of an l-group
as an interval in it.

An l-group is an algebraic structure (G,+,≤), where (G,+) is a commutative
group, (G,≤) is a lattice, and the implication a ≤ b =⇒ a + c ≤ b + c holds.
MV-algebra is an algebraic structure

(M, 0, u,¬,⊕,⊙),

where 0 is the neutral element in G, u is a positive element, M = {x ∈ G; 0 ≤ x ≤ u},
¬ : M → M is a unary operation given by the equality

¬x = u− x,

and ⊕,⊙ are two binary operations given by

a⊕ b = (a+ b) ∧ u,

a⊙ b = (a+ b− u) ∨ 0.
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Example 1. Let S be an algebra of subsets of a set Ω. Then S is an MV-algebra. If
we identify sets A with their characteristic functions, then the corresponding l-group
(G,+,≤) consists of all measurable functions, + is the sum of functions, ≤ corre-
sponds to the set inclusion. Then 0 = 0Ω, u = 1Ω,

¬χA = χAc = 1Ω − χA,

χA ⊕ χB = χA∪B,

χA ⊙ χB = χA∩B.

Example 2. Let [0, 1] be the unit interval in the set R of real numbers. Then
(R,+,≤) is an l-group, so that [0, 1] is an MV-algebra

¬a = 1− a,

a⊕ b = min(a + b, 1),

a⊙ b = max(a + b− 1, 0).

In the following definitions we shall use the symbols an ր a and bn ց b. It
means that an ≤ an+1, bn ≥ bn+1, n = 1, 2, . . . and a =

∨

∞

n=1 an, b =
∧

∞

n=1 bn.

Definition 1. A σ-complete MV-algebra is called weakly σ-distributive, if for any
double sequence (aij)ij of elements of M such that

aij ց 0(j → ∞)

there holds
∧

φ:N→N

∞
∨

j=1

aiφ(i) = 0.

(The name distributive is motivated by the equality

∧

φ:N→N

∞
∨

j=1

aiφ(i) =
∞
∨

i=1

∞
∧

j=1

aij = 0.)

Definition 2. An MV-algebra with product is an MV-algebra with a commuta-
tive and associative binary operation ⋆ satisfying the following conditions (see [6],
equivalently [3]):

(i) a ⋆ u = a,

(ii) a ⋆ (b⊕ c) = (a ⋆ b)⊕ (a ⋆ c)

(iii) an ր a =⇒ an ⋆ b ր a ⋆ b.
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Definition 3. A state on an MV-algebra M is a mapping m : M → [0, 1] satisfying
the following conditions:

(i) m(u) = 1, m(0) = 0,

(ii) a⊙ b = 0 =⇒ m(a⊕ b) = m(a) +m(b),

(iii) an ր a =⇒ m(an) ր m(a).

Definition 4. Let M be a σ-complete MV-algebra with product, m : M → [0, 1]
be a state. By an m-preserving transformation of M we understand a mapping
τ : M → M satisfying the following conditions:

(i) τ(u) = u, τ(0) = 0;

(ii) τ(a⊙ b) = τ(a)⊙ τ(b);

(iii) τ(a⊕ b) = τ(a)⊕ τ(b);

(iv) τ(a ⋆ b) = τ(a) ⋆ τ(b);

(v) τ(a ∨ b) = τ(a) ∨ τ(b);

(vi) τ(a ∧ b) = τ(a) ∧ τ(b);

(vii) an ր a =⇒ τ(an) ր τ(a);

(viii) m(τ(a)) = m(a).

The following theorem has been proved in [8]. In the following text we use the
notation text Π∞

i=kci =
∧

∞

j=1 (ck ⋆ ck+1 ⋆ ... ⋆ ck+j).

Theorem 1. Let (M, ⋆) be a σ-complete weakly σ-distributive MV-algebra with
product, m : M → [0, 1] be a state, τ : M → M be a measure preserving transfor-
mation. Then

m

(

∞
∨

k=1

a ⋆ Π∞

i=kτ
i(¬a)

)

= lim
k→∞

m
(

a ⋆ Π∞

i=kτ
i(¬a)

)

= 0.

2. Strong Poincaré recurrence theorem

The following theorem is a strengthening of Theorem 1. The proof of the theorem
is new, too.

Theorem 2. Let (M, ⋆) be a σ-complete MV-algebra with product. Let m : M →
[0, 1] satisfy the following conditions:

1. m(0) = 0,

2. a ≤ b =⇒ m(a) ≤ m(b),

3. a⊙ b = 0 =⇒ m(a⊕ b) = m(a) +m(b).
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Let τ : M → M satisfy the conditions

4. τ(0) = 0,

5. a ≤ b =⇒ τ(a) ≤ τ(b),

6. τ(a⊙ b) = τ(a)⊙ τ(b),

7. m(τ(a)) = m(a) for all a ∈ M .

Then there holds for any a ∈ M and any k ∈ N

m (a ⋆ Π∞

i=kτ(¬a)) = 0.

(Here Π∞

i=kci =
∧

∞

j=0Π
k+j
i=k ci,Π

k+j
i=k ci = ck ⋆ ck+1 ⋆ ... ⋆ ck+j.)

Proof. Let a ∈ M . Put

b = a ⋆ τ(¬a) ⋆ τ 2(¬a) ⋆ · · · ⋆ τn(¬a) ⋆ · · · = a ⋆

∞
∧

n=1

Πn
i=1τ

i(¬a).

We have

b ≤ a,

b ≤ τn(¬a).

Then
τn(b) ≤ τn(a), b ≤ τn(¬a),

hence
b⊙ τn(b) ≤ τn(a)⊙ τn(¬a) = τn(a⊙ ¬a) = τn(0) = 0.

Also if l, j ∈ N, l < j, then

τ l(b)⊙ τ j(b) = τ l(b⊙ τ (j−l)(b)) = τ l(0) = 0.

We see that (τ j(b))∞i=0 is a disjoint system, hence

Σn
j=1m(τ j(b)) = m(⊕n

j=1τ
j(b)) ≤ 1.

Of course, m(τ(b)) = m(b) for j = 1, 2, . . . , n, hence

Σn
j=1m(τ j(b)) = Σn

j=1m(b) = nm(b).

From the relation

m(b) ≤
1

n

for any n ∈ N we obtain

0 = m(b) = m (a ⋆ Π∞

i=1τ(¬a)) . (⋆)
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If we use s = τk : M → M instead of τ we obtain by (⋆)

m(a ⋆ Π∞

i=kτ
i(¬a)) ≤ m(a ⋆ Π∞

i=1(τ
k)i(¬a))) = m(a ⋆ Π∞

i=1s
i(¬a)) = 0,

hence
lim
k→∞

m(a ⋆ (Π∞

j=k(τ
j(¬a)))) = 0.

Corollary. Let m satisfy in addition the continuity condition

an ր a =⇒ m(an) ր m(a).

Then

m(
∞
∨

k=1

a ⋆ (Π∞

j=kτj(¬a))) = 0

3. Conservative mappings

P. R. Halmos [1] has shown that it is not necessary to assume that τ is measure
preserving for the proof of the Poincaré theorem. It suffices to assume that there
is no set A of positive measure such that the family (τ i(A))∞i=1 is disjoint. We shall
show that this works also in MV-algebras. Of course, instead of the family of sets of
zero measure we shall consider an ideal N ⊂ M.

Definition 5. Let M be an MV-algebra with product. A subset N ⊂ M is called
a weak ideal if is satisfies the following conditions:

1. 0 ∈ N .

2. If a ≤ b, a ∈ M, b ∈ N , then a ∈ N .

A mapping τ : M → M is called conservative if the following conditions hold:

3. If (τ i(b))∞i=0 forms a disjoint system (i.e. τ i(b) ⊙ τ j(b) = 0 for i 6= j) then
b ∈ N .

4. τ(a⊙ b) = τ(a)⊙ τ(b) for any a, b ∈ M.

5. a ≤ b implies τ(a) ≤ τ(b).

6. b ∈ N ⇐⇒ τ(b) ∈ N .

Theorem 3. Let M be a σ-complete MV-algebra with product, N ⊂ M be its
weak ideal, τ : M → M be a conservative mapping. Then

a ⋆ Π∞

i=kτ
i(¬a) ∈ N

for any a ∈ M and any k ∈ N .

Proof. Put
b = a ⋆ Π∞

i=1τ
i(¬a).
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Then

b ≤ a

b ≤ τn(¬a),

hence

b⊙ τn(b) ≤ τn(a⊙ ¬a) = τn(0) = 0.

It is easy to see that (τ i(b))∞i=0 is a disjoint system, i.e.

τ i(b)⊙ τ j(b) = 0

for i 6= j, hence
a ⋆ (Π∞

i=1τ
i(¬a)) = b ∈ N . (⋆⋆)

If τ is conservative, then also s = τk is conservative. Namely, if

si(b)⊙ sj(b) ∈ N

for i 6= j and b ∈ M, then

τ i(c)⊙ τ j(c) ∈ N

for i 6= j and c = τk(b). Therefore

τk(b) = c ∈ N

hence

b ∈ N .

The equality (⋆⋆) implies

a ⋆ Π∞

i=1s
i(¬a) ∈ N

and since

a ⋆ Π∞

j=kτ
j(¬a) ≤ a ⋆ Π∞

i=iτ
ki(¬a) = a ⋆ Π∞

i=1s
i(¬a) ∈ N

we have

a ⋆ Π∞

j=kτ
j(¬a) ∈ N .
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[10] Riečan, B. and Nebrunn, T.: Integral, measure, and ordering. Kluwer, Dor-
drecht, 1997.

242


