A STRENGTHENING OF THE POINCARÉ RECURRENCE THEOREM ON MV-ALGEBRAS

Beloslav Riečan

Faculty of Natural Sciences, Matej Bel University, Department of Mathematics Tajovského 40, Banská Bystrica, Slovakia riecan@fpv.umb.sk

Abstract

The strong version of the Poincaré recurrence theorem states that for any probability space (Ω, \mathcal{S}, P) , any *P*-measure preserving transformation $T : \Omega \to \Omega$ and any $A \in \mathcal{S}$ almost every point of *A* returns to *A* infinitely many times. In [8] (see also [4]) the theorem has been proved for MV-algebras of some type. The present paper contains a remarkable strengthening of the result stated in [8].

1. Introduction

The Poincaré recurrence theorem [5] has been proved for Boolean algebras [7], topological spaces [2] and for MV-algebras of some types in [8]. Recall that MV-algebras play an analogous role in multivalued logics as Boolean algebras in two valued logics. Any MV-algebra can be simply characterized by the help of an l-group as an interval in it.

An *l*-group is an algebraic structure $(G, +, \leq)$, where (G, +) is a commutative group, (G, \leq) is a lattice, and the implication $a \leq b \implies a + c \leq b + c$ holds. MV-algebra is an algebraic structure

$$(M, 0, u, \neg, \oplus, \odot),$$

where 0 is the neutral element in G, u is a positive element, $M = \{x \in G; 0 \le x \le u\}, \neg : M \to M$ is a unary operation given by the equality

$$\neg x = u - x,$$

and \oplus , \odot are two binary operations given by

$$a \oplus b = (a+b) \wedge u,$$

 $a \odot b = (a+b-u) \vee 0.$

Example 1. Let S be an algebra of subsets of a set Ω . Then S is an MV-algebra. If we identify sets A with their characteristic functions, then the corresponding l-group $(G, +, \leq)$ consists of all measurable functions, + is the sum of functions, \leq corresponds to the set inclusion. Then $0 = 0_{\Omega}, u = 1_{\Omega}$,

$$\neg \chi_A = \chi_{A^c} = 1_{\Omega} - \chi_A,$$
$$\chi_A \oplus \chi_B = \chi_{A \cup B},$$
$$\chi_A \odot \chi_B = \chi_{A \cap B}.$$

Example 2. Let [0,1] be the unit interval in the set R of real numbers. Then $(R, +, \leq)$ is an *l*-group, so that [0,1] is an MV-algebra

$$aggregation a = 1 - a,$$

 $a \oplus b = \min(a + b, 1),$
 $a \odot b = \max(a + b - 1, 0).$

In the following definitions we shall use the symbols $a_n \nearrow a$ and $b_n \searrow b$. It means that $a_n \le a_{n+1}, b_n \ge b_{n+1}, n = 1, 2, \ldots$ and $a = \bigvee_{n=1}^{\infty} a_n, b = \bigwedge_{n=1}^{\infty} b_n$.

Definition 1. A σ -complete MV-algebra is called weakly σ -distributive, if for any double sequence $(a_{ij})_{ij}$ of elements of M such that

$$a_{ij} \searrow 0(j \to \infty)$$

there holds

$$\bigwedge_{\phi:N\to N}\bigvee_{j=1}^{\infty}a_{i\phi(i)}=0$$

(The name distributive is motivated by the equality

$$\bigwedge_{\phi:N\to N} \bigvee_{j=1}^{\infty} a_{i\phi(i)} = \bigvee_{i=1}^{\infty} \bigwedge_{j=1}^{\infty} a_{ij} = 0.$$

Definition 2. An MV-algebra with product is an MV-algebra with a commutative and associative binary operation \star satisfying the following conditions (see [6], equivalently [3]):

(i)
$$a \star u = a$$
,
(ii) $a \star (b \oplus c) = (a \star b) \oplus (a \star c)$
(iii) $a_n \nearrow a \Longrightarrow a_n \star b \nearrow a \star b$.

Definition 3. A state on an MV-algebra M is a mapping $m: M \to [0, 1]$ satisfying the following conditions:

(i)
$$m(u) = 1, m(0) = 0,$$

(ii) $a \odot b = 0 \Longrightarrow m(a \oplus b) = m(a) + m(b)$
(iii) $a_n \nearrow a \Longrightarrow m(a_n) \nearrow m(a).$

Definition 4. Let M be a σ -complete MV-algebra with product, $m: M \to [0, 1]$ be a state. By an *m*-preserving transformation of M we understand a mapping $\tau: M \to M$ satisfying the following conditions:

(i) $\tau(u) = u, \tau(0) = 0;$ (ii) $\tau(a \odot b) = \tau(a) \odot \tau(b);$ (iii) $\tau(a \oplus b) = \tau(a) \oplus \tau(b);$ (iv) $\tau(a \star b) = \tau(a) \star \tau(b);$ (v) $\tau(a \lor b) = \tau(a) \lor \tau(b);$ (vi) $\tau(a \land b) = \tau(a) \land \tau(b);$ (vii) $a_n \nearrow a \Longrightarrow \tau(a_n) \nearrow \tau(a);$ (viii) $m(\tau(a)) = m(a).$

The following theorem has been proved in [8]. In the following text we use the notation text $\prod_{i=k}^{\infty} c_i = \bigwedge_{j=1}^{\infty} (c_k \star c_{k+1} \star \dots \star c_{k+j}).$

Theorem 1. Let (M, \star) be a σ -complete weakly σ -distributive MV-algebra with product, $m : M \to [0, 1]$ be a state, $\tau : M \to M$ be a measure preserving transformation. Then

$$m\left(\bigvee_{k=1}^{\infty}a\star\Pi_{i=k}^{\infty}\tau^{i}(\neg a)\right)=\lim_{k\to\infty}m\left(a\star\Pi_{i=k}^{\infty}\tau^{i}(\neg a)\right)=0.$$

2. Strong Poincaré recurrence theorem

The following theorem is a strengthening of Theorem 1. The proof of the theorem is new, too.

Theorem 2. Let (M, \star) be a σ -complete MV-algebra with product. Let $m : M \to [0, 1]$ satisfy the following conditions:

- 1. m(0) = 0, 2. $a < b \Longrightarrow m(a) < m(b)$,
- 3. $a \odot b = 0 \Longrightarrow m(a \oplus b) = m(a) + m(b)$.

Let $\tau: M \to M$ satisfy the conditions

- 4. $\tau(0) = 0$,
- 5. $a \le b \Longrightarrow \tau(a) \le \tau(b)$,
- 6. $\tau(a \odot b) = \tau(a) \odot \tau(b)$,
- 7. $m(\tau(a)) = m(a)$ for all $a \in M$.

Then there holds for any $a \in M$ and any $k \in N$

$$m\left(a \star \prod_{i=k}^{\infty} \tau(\neg a)\right) = 0.$$

(Here $\prod_{i=k}^{\infty} c_i = \bigwedge_{j=0}^{\infty} \prod_{i=k}^{k+j} c_i, \prod_{i=k}^{k+j} c_i = c_k \star c_{k+1} \star \ldots \star c_{k+j}$.) **Proof.** Let $a \in M$. Put

$$b = a \star \tau(\neg a) \star \tau^2(\neg a) \star \dots \star \tau^n(\neg a) \star \dots = a \star \bigwedge_{n=1}^{\infty} \prod_{i=1}^n \tau^i(\neg a).$$

We have

$$b \le a,$$

$$b \le \tau^n(\neg a).$$

Then

$$\tau^n(b) \le \tau^n(a), b \le \tau^n(\neg a),$$

hence

$$b \odot \tau^n(b) \le \tau^n(a) \odot \tau^n(\neg a) = \tau^n(a \odot \neg a) = \tau^n(0) = 0.$$

Also if $l, j \in N, l < j$, then

$$\tau^{l}(b)\odot\tau^{j}(b)=\tau^{l}(b\odot\tau^{(j-l)}(b))=\tau^{l}(0)=0.$$

We see that $(\tau^j(b))_{i=0}^{\infty}$ is a disjoint system, hence

$$\sum_{j=1}^n m(\tau^j(b)) = m(\bigoplus_{j=1}^n \tau^j(b)) \le 1.$$

Of course, $m(\tau(b)) = m(b)$ for j = 1, 2, ..., n, hence

$$\sum_{j=1}^n m(\tau^j(b)) = \sum_{j=1}^n m(b) = nm(b).$$

From the relation

$$m(b) \le \frac{1}{n}$$

for any $n \in N$ we obtain

$$0 = m(b) = m\left(a \star \prod_{i=1}^{\infty} \tau(\neg a)\right). \tag{(\star)}$$

If we use $s = \tau^k : M \to M$ instead of τ we obtain by (\star)

$$m(a \star \prod_{i=k}^{\infty} \tau^i(\neg a)) \le m(a \star \prod_{i=1}^{\infty} (\tau^k)^i(\neg a))) = m(a \star \prod_{i=1}^{\infty} s^i(\neg a)) = 0,$$

hence

$$\lim_{k \to \infty} m(a \star (\prod_{j=k}^{\infty} (\tau^j(\neg a)))) = 0.$$

Corollary. Let m satisfy in addition the continuity condition

$$a_n \nearrow a \Longrightarrow m(a_n) \nearrow m(a)$$

Then

$$m(\bigvee_{k=1}^{\infty} a \star (\prod_{j=k}^{\infty} \tau_j(\neg a))) = 0$$

3. Conservative mappings

P. R. Halmos [1] has shown that it is not necessary to assume that τ is measure preserving for the proof of the Poincaré theorem. It suffices to assume that there is no set A of positive measure such that the family $(\tau^i(A))_{i=1}^{\infty}$ is disjoint. We shall show that this works also in MV-algebras. Of course, instead of the family of sets of zero measure we shall consider an ideal $\mathcal{N} \subset \mathcal{M}$.

Definition 5. Let \mathcal{M} be an MV-algebra with product. A subset $\mathcal{N} \subset \mathcal{M}$ is called a weak ideal if is satisfies the following conditions:

- 1. $0 \in \mathcal{N}$.
- 2. If $a \leq b, a \in \mathcal{M}, b \in \mathcal{N}$, then $a \in \mathcal{N}$.

A mapping $\tau : \mathcal{M} \to \mathcal{M}$ is called conservative if the following conditions hold:

- 3. If $(\tau^i(b))_{i=0}^{\infty}$ forms a disjoint system (i.e. $\tau^i(b) \odot \tau^j(b) = 0$ for $i \neq j$) then $b \in \mathcal{N}$.
- 4. $\tau(a \odot b) = \tau(a) \odot \tau(b)$ for any $a, b \in \mathcal{M}$.
- 5. $a \leq b$ implies $\tau(a) \leq \tau(b)$.
- 6. $b \in \mathcal{N} \iff \tau(b) \in \mathcal{N}$.

Theorem 3. Let \mathcal{M} be a σ -complete MV-algebra with product, $\mathcal{N} \subset \mathcal{M}$ be its weak ideal, $\tau : \mathcal{M} \to \mathcal{M}$ be a conservative mapping. Then

$$a \star \prod_{i=k}^{\infty} \tau^i(\neg a) \in \mathcal{N}$$

for any $a \in \mathcal{M}$ and any $k \in N$.

Proof. Put

$$b = a \star \prod_{i=1}^{\infty} \tau^i(\neg a).$$

Then

$$b \le a$$
$$b \le \tau^n(\neg a),$$

hence

$$b \odot \tau^n(b) \le \tau^n(a \odot \neg a) = \tau^n(0) = 0.$$

It is easy to see that $(\tau^i(b))_{i=0}^{\infty}$ is a disjoint system, i.e.

$$\tau^i(b) \odot \tau^j(b) = 0$$

for $i \neq j$, hence

$$a \star (\prod_{i=1}^{\infty} \tau^{i}(\neg a)) = b \in \mathcal{N}.$$
(**)

If τ is conservative, then also $s = \tau^k$ is conservative. Namely, if

$$s^i(b) \odot s^j(b) \in \mathcal{N}$$

for $i \neq j$ and $b \in \mathcal{M}$, then

$$\tau^i(c) \odot \tau^j(c) \in \mathcal{N}$$

for $i \neq j$ and $c = \tau^k(b)$. Therefore

$$\tau^k(b) = c \in \mathcal{N}$$

hence

 $b \in \mathcal{N}$.

The equality $(\star\star)$ implies

$$a \star \prod_{i=1}^{\infty} s^i(\neg a) \in \mathcal{N}$$

and since

$$a \star \prod_{j=k}^{\infty} \tau^{j}(\neg a) \le a \star \prod_{i=i}^{\infty} \tau^{ki}(\neg a) = a \star \prod_{i=1}^{\infty} s^{i}(\neg a) \in \mathcal{N}$$

we have

$$a \star \prod_{j=k}^{\infty} \tau^j(\neg a) \in \mathcal{N}.$$

Acknowledgement

This paper was supported by the grant VEGA 1/0621/11.

References

- [1] Halmos, P. R.: Lectures on ergodic theory. AMS New York, 1956.
- [2] Maličký, P.: Category version of the Poincaré recurrence theorem. Topology Appl. 154 (2007), 2709–2713.

- [3] Montagna, F.: An algebraic approach to propositional fuzzy logic. J. Logic Lang. Inform. 9 (2000), 91–124.
- [4] Mundici, D.: Advanced Lukasiewicz calculus and MV-algebras. Trends in Logic 35 (2011), Springer New York.
- [5] Poincaré, H.: Les methodes nouvelles de la mechanique classique celeste. 3, Gauthiers-Villars, Paris, 1989.
- [6] Riečan, B.: On the product MV-algebras. Tatra Mt. Math. Publ. 16 (1999), 143–149.
- [7] Riečan, B.: A note on the Poincaré recurrence theorem on Boolean rings. Mat. fyz. Časopis 15 (1965), 13–22 (Russian).
- [8] Riečan, B.: Strong Poincaré recurrence theorem in MV-algebras. Math. Slovaca 60 (5) (2009), 1–10.
- [9] Riečan, B. and Mundici, D.: Probability on MV-algebras. In: E. Pap. (Ed.), Handbook of Measure Theory, pp. 869–909. Elsevier Science, Amsterdam, (2002).
- [10] Riečan, B. and Nebrunn, T.: Integral, measure, and ordering. Kluwer, Dordrecht, 1997.