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Abstract

Selected applications of the algebraic classification of tensors on Lorentzian man-
ifolds of arbitrary dimension are discussed. We clarify some aspects of the relation-
ship between invariants of tensors and their algebraic class, discuss generalization of
Newman-Penrose and Geroch-Held-Penrose formalisms to arbitrary dimension and
study an application of the algebraic classification to the case of quadratic gravity.

1. Introduction

This contribution focuses on selected applications of the algebraic classification
of tensors on Lorentzian manifolds of arbitrary dimension introduced in [2, 15] and
conveniently summarized in paper [20] in this volume.

The algebraic classification of tensors in higher dimensions was originally devel-
oped in the context of studying invariants of the Weyl tensor and naturally first
applications were in this area [3]. However, this research is still in development and
very recently new important insights were obtained in [12]. Therefore, in section 2
we overview the relationship between the algebraic class of a tensor and its polyno-
mial invariants. In this context we also discuss VSI spacetimes - spacetimes with
vanishing curvature invariants.

In section 3, we focus on the generalization of the Newman-Penrose (NP) formal-
ism and the Geroch-Held-Penrose (GHP) formalism to the case of arbitrary dimen-
sion [19, 16, 8]. The main goal of this section is to show how assuming the spacetime
to be algebraically special often leads to a dramatic simplification of PDEs of this
formalism. To illustrate this point we discuss two problems: i) we solve the Sachs
equation for non-degenerate algebraically special spacetimes and ii) we use GHP
formalism to prove a proposition about type N Einstein spacetimes.

In section 4, we show how assuming the Weyl tensor to belong to certain alge-
braically special classes leads to a considerable simplification of the field equations of
a particular generalization of the Einstein theory, so called quadratic gravity. This
approach allows us to identify a new class of exact solutions of this theory.
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2. Invariants of a tensor

As pointed out in [2, 15], the algebraic classification based on the alignment theory
developed there can be applied to an arbitrary tensor on a Lorentzian manifold.
Using notation of [12], the tensor T can be decomposed according to boost weight
of its components

T =
∑

b

(T )b (1)

with (T )b being components of boost weight b. By definition, T is said to be of type
II if there exists a frame for which all positive boost weight components vanish and
type III if only negative boost weight components are non-zero.

Some information encoded in the tensor T can be invariantly expressed in terms
of its polynomial invariants. For a rank two tensor, examples of such invariants are
its trace T a

a or TabT
ab. Note that in the case of the Riemannian signature TabT

ab

is essentially a sum of squares of all components of T and is thus non-vanishing.
In the Lorentzian case TabT

ab can vanish for (special) non-trivial T but in principle
some more complicated invariants, such as TabT

acT b
c, could survive. What are the

necessary and sufficient conditions for vanishing of all polynomial invariants of T ?
Very recently the following proposition (discussed previously as the algebraic VSI

conjecture in [3]) was proven in [12]

Proposition 1. All polynomial invariants of a tensor T of arbitrary rank on
a Lorentzian manifold of arbitrary dimension vanish if and only if T is of type III.

Thus clearly a tensor T of type III contains more information than its polyno-
mial invariants. One can then ask under what conditions polynomial invariants of
a tensor T contain less information than T or in other words when T is not charac-
terized by its invariants. In terms of the algebraic classification the answer is again
surprisingly simple [12].

Proposition 2. Assume that a tensor T is not characterized by its polynomial in-
variants. Then it is of type II or more special.

The elegant proof [12] of this proposition (in fact of a more general statement
applying to invariants of a set of tensors) combines the use of invariant theory, group
theory and real analysis.

Definition 1. Curvature invariant of order p is a polynomial invariant constructed
from metric, curvature tensors (the Riemann, Ricci, and Weyl tensors) and their
covariant derivatives up to order p.

Definition 2. We say that a manifold M with a metric of arbitrary signature is
VSI (vanishing scalar invariants) if all curvature invariants of all orders vanish at
all points of M .
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The VSI condition is obviously very restrictive and in the case of positive definite
metric (the Riemannian case) the only such manifold is a flat space. However, in the
Lorentzian case, the set of VSI manifolds is non-trivial.

Theorem 1. VSI Theorem: A Lorentzian manifold of arbitrary dimension is VSI if
and only if the following two conditions are satisfied:
(A) The spacetime possesses a non-expanding, twist-free, shear-free, geodesic null
congruence and consequently belongs to the Kundt class.
(B) Relative to the above null congruence, all curvature tensors are of algebraic
type III or more special.

In four dimensions this theorem has been proven in [18]. In [3] it has been proven
that conditions (A) and (B) imply VSI in arbitrary dimension. The part of the proof
showing that VSI property implies (A) and (B) has been given there only under the
assumption that the algebraic VSI conjecture holds1. Thanks to the Proposition 1.
the proof of the VSI theorem is now complete.

Motivated by the VSI theorem, various authors have studied Kundt spacetimes
in arbitrary dimension and explicit metrics of Kundt type III and type N spacetimes
are now known (see e.g. [1]).

Apart from differential geometry [10], VSI spacetimes are of interest in various
physical theories, such as general relativity [9] and supergravity [6] or when studying
quantum corrections of these theories [5]. Possible applications of VSI spacetimes in
string theory are also discussed in [4].

Recently VSI spacetimes with more general signatures were studied in [13].

3. Generalization of NP and GHP formalisms to higher dimensions

In four dimensions Newman-Penrose formalism and Geroch-Held-Penrose for-
malism are essential tools for finding exact solutions of the Einstein field equations
and analyzing their properties. Using the higher dimensional classification of the
Weyl tensor, these methods were generalized to arbitrary dimension in [19, 16] (NP)
and [8] (GHP).

In the NP (GHP) formalism, Einstein equations can be rewritten as a particular
set of first order partial differential equations. These equations are considerably
simplified when searching for algebraically special solutions. In four dimensions,
this approach has led to discovery of many exact solutions of the Einstein equations
including the famous Kerr solution describing gravitational field of a rotating black
hole.

In higher dimensions, a similar simplification for algebraically special solutions
occurs, however, the search for new exact solutions is still in the initial phase. We
will therefore illustrate advantages of the NP (GHP) formalism on a few selected
equations from the complete set of PDEs.

1An omission in the original proof that VSI imply (A) and (B) has been clarified in [12].
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We will use a null frame consisting of two null vectors ℓ = m(1) = m(0) and
n = m(0) = m(1) and n− 2 spacelike vectors m(i) = m(i) obeying

ℓaℓa = nana = 0, ℓana = 1, m(i)am(j)
a = δij , a = 0 . . . n− 1 (2)

with i, j, k = 2 . . . n− 1. Thus the metric can be expressed as

gab = 2ℓ(anb) + δijm
(i)
a m

(j)
b . (3)

Let us denote covariant derivatives of the basis vectors as

Lµν = ∇νℓµ, Nµν = ∇νnµ,
i

Mµν = ∇νm(i)µ. (4)

The projections onto the basis are the scalars Lab, Nab,
i

Mab. As a consequence of (2),
they are subject to the following conditions

N0a + L1a = 0,
i

M 0a + Lia = 0,
i

M 1a +Nia = 0,
i

M ja +
j

M ia = 0, (5)

L0a = N1a =
i

M ia = 0. (6)

Vector field ℓ is tangent to a null geodesic if and only if κi ≡ Li0 = 0 and in such a case
one can always choose an affine parameterization with L10 = 0. Then expansion,
shear and twist of the congruence are determined by trace, trace-free symmetric and
antisymmetric parts of ρij ≡ Lij , respectively.

Let us also introduce covariant derivatives along the frame vectors by

D ≡ ℓa∇a, △ ≡ na∇a, δi ≡ ma
(i)∇a. (7)

It is often more convenient to introduce compact GHP derivative operators þ and k

which still obey the Leibnitz rule. The full definition of these operators can be found
in [8]. Here we just give few illustrative examples

þρij = Dρij − L10ρij +
k

M i0ρkj +
k

M j0ρik, (8)

þΦij = DΦij +
s

M i0Φsj +
s

M j0Φis, (9)

þΨijk = DΨijk + L10Ψijk +
s

M i0Ψsjk +
s

M j0Ψisk +
s

Mk0Ψijs, (10)

þΩ′
ij = DΩ′

ij + 2L10Ω
′
ij + 2Ψ(i|s

s

M |j)0. (11)

3.1. Ricci equations

Contractions of the Ricci identity va;bc−va;cb = Rsabcv
s with various combinations

of the frame vectors and with va being either ℓa, na or ma
(i) lead to a set of first order

differential equations which are in full given in [16].
The point of this section is to illustrate how a clever choice of a frame for Einstein

spacetimes admitting a Weyl aligned null direction (WAND) leads to a considerable
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simplification of these equations. Here let us discuss only the case of the Sachs
equation (12) which can be set to a strikingly simple form (14).

The Sachs equation in full generality reads

DLij − δjLi0 = L10Lij − Li0(2L1j +Nj0)− Li1Lj0

+2Lk[0|

k

M i|j] − Lik(Lkj +
k

M j0)− C0i0j − 1
n−2

R00δij. (12)

By choosing a frame parallelly propagated along the geodetic congruence ℓ it reduces
to

DLij = −LikLkj − C0i0j − 1
n−2

R00δij (13)

and for Einstein spaces of type I (or more special algebraic types) it becomes

DLij = −LikLkj, in matrix form: DL = −L2. (14)

For invertible matrix L, the Sachs equation implies [17]

DL−1 = I ⇒ L−1 = rI− b, Db = 0. (15)

where I is the identity matrix, r is an affine parameter along the geodetic congruence ℓ
and b is a matrix constant along each geodetic (and thus independent on r).

Note that
L−1
[ij] = −b[ij], (16)

and thus L[ij] = 0 ⇔ b[ij] = 0. Therefore the antisymmetric part of b is responsible
for twist.

3.2. Bianchi equations

For Einstein spacetimes, the Ricci tensor is proportional to the metric and con-
sequently ∇ρRµν = 0. Therefore Bianchi identity ∇[τ |Rµν|ρσ] = 0 implies that

∇[τ |Cµν|ρσ] = 0. (17)

The frame components of these equations lead to a set of complicated first order
PDEs which can be found in [8]. These equations can be greatly simplified by
assuming algebraically special spacetimes.

Let us further discuss the simplest non-trivial case, type N Einstein spacetimes, to
provide an illustration of the use of NP/GHP formalism. The following proposition
for the Ricci-flat case was proven in [19]. Considerably shorter proof applying also
to Einstein spaces was given in [8]. Hereafter we thus follow [8].

Proposition 3. The multiple WAND ℓ of type N Einstein spacetime is necessarily
geodetic and the optical matrix ρ can be cast to the form

ρ =





1
2

(

ρ a
−a ρ

)

0

0 0



 (18)
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Proof. In a type N Einstein spacetime the only non-vanishing components of the
Weyl tensor are determined by a symmetric traceless matrix Ω′

ij . Therefore Bianchi
equation (B5) from [8]

þ′Ψijk − 2k[j|Φi|k] = 2(Ψ′
[j|δil −Ψ′

[j|il)ρl|k] + (2Φi[jδk]l − 2δilΦ
A
jk − Φiljk)τl

+2(Ψiδ[j|l −Ψi[j|l)ρ
′
l|k] + 2Ωi[jκ

′
k], (19)

implies
Ω′

i[jκk] = 0, (20)

where the square brackets denote antisymmetrization. By tracing (20) over i and k
we obtain

Ω′
ijκi = 0, (21)

while by multiplying (20) by Ω′
ik and using (20) we arrive to

(Ω′
ikΩ

′
ik)κj = 0. (22)

Since for type N Ω′
ik possesses at least one non-vanishing component we conclude

that κj = 0 and thus the multiple WAND for Einstein type N spacetimes is always
geodetic.

Now the remaining Bianchi equations [8] imply

þΩ′
ij = −Ω′

ikρkj, (23)

Ω′
i[jρkl] = 0, (24)

Ω′
i[k|ρj|l] = Ω′

j[k|ρi|l]. (25)

Let us denote symmetric and antisymmetric parts of ρ as S and A, respectively.
Tracing (24) and (25) over i and k leads to

Ω′A+AΩ′ = 0, (26)

Ω′ρ+ ρΩ′ = (trρ)Ω′, (27)

respectively. Using (26), eq. (27) reduces to

Ω′S+ SΩ′ = (trS)Ω′. (28)

The antisymmetric part of (23) reads

0 = −[Ω′,S]− (Ω′A+AΩ′), (29)

which, together with (26), gives

[Ω′,S] = 0. (30)

This allows us to use rotations of the m(i) to diagonalize simultaneously both Ω′

and S.
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Let us denote the number of non-vanishing eigenvalues ofΩ′ by N . We can shuffle
the vectors m(i) so that

Ω′ = diag(ψ(2), ..., ψ(N+1), 0, ..., 0), S = diag(s(2), ..., s(n−1)), (31)

with all the ψ(α) being non-zero2. Note that for type N spacetime N ≥ 1. Substitut-
ing (31) into (28) leads to

ψ(i)s(i) =
1

2
ψ(i)(trS) (no summation over i) (32)

for all i and thus

s(α) =
trS

2
for α = 2, ..., N + 1. (33)

The αI component of (26) implies that AIα = 0 = AαI , and thus ρ is block diagonal
with blocks of size N and n − 2 − N . The ijkl = IαJβ component of the Bianchi
equation (25) implies Ω′

αβρIJ = 0 and therefore ρIJ = 0.
So far we have shown that

ρ =

(

ρ

2
1N +AN 0

0 0

)

, (34)

where trS = ρ, 1N is the N×N identity matrix, and AN is an antisymmetric N×N
matix. The trace of the above equation leads to

ρ = Nρ/2 (35)

and thus either (i) N = 2 or (ii) ρ = 0.
For N = 2 we have shown that ρ must be of the form (18) for some a.
In the second case (ii) vanishing of ρ implies S = 0. The trace of the Sachs

equation reads þ(trS) = −tr(S2) − tr(A2). Consequently tr(A2) = −AijAij also
vanishes, implying A = 0. Such spacetime is thus Kundt. 2

4. Quadratic gravity

In this section we would like to follow [14] to point out that field equations of
various theories generalizing the Einstein gravity can be considerably simplified by
choosing sufficiently special algebraic type of the metric.

In perturbative quantum gravity, corrections have to be added to the Einstein
action. Since we require coordinate invariance, these corrections consist of various
curvature invariants. One important class of such modified gravities is quadratic
gravity whose action contains general quadratic terms in curvature [7]

S =

∫

dnx
√
−g

(

1

κ
(R− 2Λ0) + αR2 + βR2

ab + γ
(

R2
abcd − 4R2

ab +R2
)

)

. (36)

2From now on indices α, β, ... range over 2, ..., N + 1 and I, J, ... range over N + 2, ..., n− 1.
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The action (36) leads to vacuum quadratic gravity field equations [11]

1

κ

(

Rab −
1

2
Rgab + Λ0gab

)

+ 2αR

(

Rab−
1

4
Rgab

)

+ (2α + β) (gab∇c∇c−∇a∇b)R

+2γ

(

RRab − 2RacbdR
cd +RacdeR

cde
b − 2RacR

c
b − 1

4
gab

(

R2
cdef − 4R2

cd +R2
)

)

+β∇c∇c

(

Rab −
1

2
Rgab

)

+ 2β

(

Racbd −
1

4
gabRcd

)

Rcd = 0. (37)

Obviously these fourth order non-linear PDEs are far more complicated than
Einstein equations

Rab =
2Λ

n− 2
gab (38)

and it seems hopeless to attempt to solve this system without starting with some
simplifying assumptions.

If we restrict our interest to Einstein spacetimes obeying (38), the equations of
quadratic gravity reduce to [14]

Bgab − γ

(

C cde
a Cbcde −

1

4
gabC

cdefCcdef

)

= 0, (39)

where

B =
Λ− Λ0

2κ
+ Λ2

(

(n− 4)

(n− 2)2
(nα + β) +

(n− 3)(n− 4)

(n− 2)(n− 1)
γ

)

. (40)

Note that in the above equations we have used

Rabcd = Cabcd +
2

n− 2
(ga[cRd]b − gb[cRd]a)−

2

(n− 1)(n− 2)
Rga[cgd]b (41)

to express the Riemann tensor in terms of the Weyl and Ricci tensors and the scalar
curvature R = 2n

n−2
Λ.

It can be shown that for type N spacetimes

C cde
a Cbcde = CcdefCcdef = 0 (42)

and thus in this case eqs. (39), (40) reduce to a simple algebraic constraint relating
the effective cosmological constant Λ with parameters of the quadratic gravity α, β,
γ, κ, Λ0. We thus arrive at

Proposition 4. In arbitrary dimension all Weyl type N Einstein spacetimes with
cosmological constant Λ (chosen to obey B = 0) are exact solutions of quadratic
gravity (37).
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Since many type N Einstein spacetimes are known, we obtained “for free” a rich
class of exact solutions of quadratic gravity.

These results may be partially generalized to the case of type III spacetimes or
to the case of type N spacetimes which are not Einstein but admit Ricci tensor of
the form

Rab =
2Λ

n− 2
gab + Φℓaℓb. (43)

See [14] for further details.
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[8] Durkee, M., Pravda, V., Pravdová, A., and Reall, H. S.: Generalization of the
Geroch-Held-Penrose formalism to higher dimensions. Class. Quantum Grav.
27 (2010), 215 010.

[9] Frolov, V.P., Israel, W., and Zelnikov, A.: Gravitational field of relativistic
gyratons. Phys. Rev. D 72 (2005), 084031.

[10] Gilkey, P.: The Geometry of curvature homogeneous pseudo-Riemannian man-
ifolds, ICP Advanced Texts in Mathematics, Vol. 2. Imperial College Press,
London, 2007.

222



[11] Gullu, I. and Tekin, B.: Massive higher derivative gravity in D-dimensional
anti-de Sitter spacetimes. Phys. Rev. D 80 (2009), 064033.

[12] Hervik, S.: A spacetime not characterised by its invariants is of aligned type II.
Class. Quantum Grav. 28 (2011), 215009.

[13] Hervik, S. and Coley, A.: Pseudo-Riemannian VSI spaces. Class. Quantum
Grav. 28 (2011), 015008.
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