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Institute of Mathematics AS CR, Prague 2012

UNIFORM L1 ERROR BOUNDS FOR SEMI-DISCRETE

FINITE ELEMENT SOLUTIONS OF EVOLUTIONARY

INTEGRAL EQUATIONS

Qun Lin1, Da Xu2, Shuhua Zhang3

1 Academy of Mathematics and Systems Science
Chinese Academy of Sciences, Beijing 100190

linq@lsec.cc.ac.cn
2 Key Laboratory of High Performance Computing and Stochastic Information

Processing (Ministry of Education of China), Department of Mathematics
Hunan Normal University, Changsha 41008

daxu@hunnu.edu.cn
3 Research Center for Mathematics and Economics

Tianjin University of Finance and Economics, Tianjin 300222

szhang@tjufe.edu.cn (corresponding author)

Abstract

In this paper, we consider the second-order continuous time Galerkin approxima-
tion of the solution to the initial problem ut+

∫
t

0
β(t−s)Au(s)ds = 0, u(0) = v, t > 0,

where A is an elliptic partial-differential operator and β(t) is positive, nonincreasing
and log-convex on (0,∞) with 0 ≤ β(∞) < β(0+) ≤ ∞. Error estimates are derived
in the norm of L1

t
(0,∞;L2

x
), and some estimates for the first order time derivatives of

the errors are also given.

1. Introduction

We study the discretization in space of the initial-boundary value problem (with
ut = ∂u/∂t),

ut(t) +

∫ t

0

β(t− s)Au(s)ds = 0 in Ω, for t > 0,

u = 0 on ∂Ω, for t > 0,

u(0, ·) = u0 in Ω,

(1.1)

where Ω is a bounded domain in Rd with a smooth boundary ∂Ω, A is a linear
selfadjoint positive definite second-order elliptic partial differential operator. For the
real-valued kernel β we assume that

β ∈ C(0,∞) ∩ L1(0, 1) is positive, nonincreasing, and

log-convex on (0,∞),with 0 ≤ β(∞) < β(0+) ≤ ∞.
(1.2)
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Problems such as (1.1) occur, e.g., in modelling heat transfer in materials with
memory. See, for example, [1, 2], and the references therein. The numerical solu-
tions of the problems of type (1.1) have been studied in extensive literature. See,
for instance, [3-14] for the finite element method, [15, 16, 17] the finite difference
method, [18-21] the mixed finite element method, and [22] the finite volume element
method. The kernel considered in [23, 24] is the positive type, and in, e.g., [25, 26]
weakly singular, and [27, 28] completely monotonic, which is a particular case of (1.2)
(cf. [29, Miller 1968, Lemma 2]). The kernels β(t) with the condition (1.2) has been
introduced in a very ingenious paper [30, Prüss 1987], which shows that β(t) is
completely positive (also, see [31, Clément and Nohel, 1979]), therefore β(t) is of
positive type (cf. [32, Clément and Mitidieri 1988, page 11]). Thus, the kernels
satisfying (1.2) are intermediate between the classical completely monotonic and the
positive type.

In the positive type, McLean and Thomée in [23] studied the finite element
method, and obtained the error bounds for small t, and in [33] presented the
exponential decay for a fully-discrete scheme in which the backward Euler method in
combination with the convolution quadrature was used for the time discretization.
In that paper, the kernel considered was under stronger assumptions and the expo-
nential decay. Yan and Fairweather [24] analyzed the spline collocation method with
the asymptotic error behavior, but with the decreasing exponentially weight. For the
weakly singular kernel, the asymptotic error estimates were analyzed in, e.g., [25, 26].
Choi and MacCamy[25] gave the asymptotic error analysis in L2

t (0,∞;L2
x), the space

of all measurable functions f : [0,+∞) → L2(Ω) such that
∫∞

0
‖f(t)‖2dt <∞, where

‖ ·‖ denotes the norm in L2 = L2(Ω). The results in [26] presented the optimal order
error bounds for nonsmooth data u0 ∈ L2(Ω).

In our earlier papers [27, 28], we considered the completely monotonic convolution
kernel, and studied the backward Euler time discretization [28] and the finite element
methods [27], respectively. The analysis in both of those papers was based on the
methods of Carr and Hannsgen [34, 35] who considered the kernel satisfying

β(t) ∈ C(R+) ∩ L1(0, 1), not constant, and β(t) is nonnegative,

nonincreasing, and convex on R+, 0 < β(0+) ≤ ∞, and β(∞) ≥ 0,
(1.3)

rather than log-convex, and satisfies some additional conditions, for example, −β ′

is convex. Carr and Hannsgen used the spectral theory for selfadjoint operators in
Hilbert spaces and the results on the solutions of the parameter-dependent scalar
Volterra equation,

du(t, λ)

dt
+ λ

∫ t

0

β(t− s)u(s, λ)ds = 0, u(0, λ) = 1. (1.4)

For a general Ω ⊂ Rd we denote below by ‖ · ‖r the norms in the Sobolev spaces
Hr = Hr(Ω) = W r

2 (Ω), such that for any real-valued function v, and any positive
integer r,
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‖v‖r = ‖v‖Hr =


∑

|α|≤ r

‖Dαv‖2




1/2

,

where Dα = (∂/∂ x1)
α1 · · · (∂/∂ xd)

αd, α = (α1, · · · , αd), denotes an arbitrary deriva-

tive with respect to x of order |α| =
d∑

j=1

αj, so that the sum above contains all such

derivatives of order at most r. As usual, we use the notation H1
0 = H1

0(Ω) to stand
for the Sobolev space which consists of the functions v with ∇ v = grad v in L2(Ω)
and vanishing on ∂ Ω.

Under the assumption (1.3), and assuming that −β ′ is convex, they have obtained
the following two more estimates,

∫ ∞

0

‖u(t)‖dt ≤ C‖u0‖, (1.5)

∫ ∞

0

‖u′(t)‖dt ≤ C‖u0‖1, (1.6)

where C is a positive constant independent of u(t, x).
In our earlier work [27], we showed uniform L1

t (0,∞;L2
x) global error estimates

for the linear finite element solutions, provided the initial data are appropriately
smooth. The present paper is a continuation of the investigation in Xu [27], and
the discretization (1.8) whose kernel satisfying (1.2) is considered here. We use
the methods developed in Prüss [30, 36] to show uniform L1

t (0,∞;L2
x) global error

estimates, and relaxes the regularity assumption on the initial data u0.
It is noted that the approach of Prüss [30, 36] is quite different from Carr and

Hannsgen [34, 35]. Prüss [30, 36] gave a new approach to questions such as those in
Carr and Hannsgen [34, 35], avoiding a lot of messy estimates in overlapping cases.
Indeed, by means of Laplace transform methods, operational calculus techniques and
Banach algebra theory Prüss [30, 36] also derived (1.5), (1.6) and in particular the
estimate ∫ ∞

0

‖u′′(t)‖dt ≤ C‖Au0‖, (1.7)

when β(t) satisfies (1.2) and β̇(t) is absolutely continuous on (0, ∞) in case µ =

(β(0+))
1

2 < ∞, and for (1.7) if µ + κ = ∞, −
∫ 1

0
β(t) log t dt < ∞ holds with

κ = −β̇(0+)/2µ; see [30, Theorem 11] and [36, Theorems 3.2 and 3.3].
For our aim, we assume that we are given a family Sh of the piecewise linear

functions on a triangulation of Ω of standard type such that

inf
χ∈Sh

{‖u− χ‖+ h‖u− χ‖1} ≤ Ch2‖u‖2 ∀u ∈ H2(Ω) ∩H1
0(Ω),

where A(·, ·) denotes the bilinear form associated with A, and (·, ·) the inner product
in L2(Ω). Then, the spatially discrete problem is to find uh(t) ∈ Sh for t ≥ 0 such
that
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(uh,t, χ) +

∫ t

0

β(t− s)A(uh(s), χ)ds = 0, for χ ∈ Sh, t > 0,

uh(0) = u0h ≈ u0.
(1.8)

For this problem, it was shown in [27] that with u0h = P0hu0, where P0h is the
L2(Ω)-projection onto Sh, there holds

∫ ∞

0

‖uh(t)− u(t)‖dt ≤ Ch2‖u0‖4, (1.9)

where β(t) satisfies (1.3) and−β̇(t) is convex (c.f. [27, Theorem 1.1 and Remark 2.3]).
Our purpose is to study the discretization (1.8) with the kernel (1.2) and derive

some estimates similar to (1.9).

Theorem 1.1. Suppose β(t) satisfies (1.2) and β̇(t) is absolutely continuous in case
µ <∞. Then, for the solutions of (1.1) and (1.8), with u0h = P0hu0, we have

(i) if µ+ κ = ∞,

∫ ∞

0

‖uh(t)− u(t)‖dt ≤ Ch2‖u0‖2,

(ii) if µ+ κ <∞,

∫ ∞

0

‖uh(t)− u(t)‖dt ≤ Ch2‖u0‖3.
(1.10)

Theorem 1.1 partly recovers and extends results of Xu [27], since logarithmic
convex functions are in particular convex, and relaxes the regularity assumption on
the initial data u0 to a sharper case given by McLean and Thomée [33, Theorem 5.1].

The exact solution of (1.1) can be represented as

u(x, t) =
∞∑

j=1

uλj
(t)(ϕj, u0)ϕj, for t ≥ 0,

where uλj
(t) is the solution of the corresponding scalar problem (1.4) and {λj}

∞
1

and {ϕj}
∞
1 are the eigenvalues (in nondecreasing order) and (L2(Ω) orthonormal)

eigenfunctions of the associated elliptic problem

Aw = λw in Ω, w = 0 on ∂Ω.

The eigenvalues are positive and tend to infinity when j → ∞.
We now introduce the solution operator T of the elliptic problem:

Aw = f in Ω, w = 0 on ∂Ω,

by w = Tf . This operator can be represented by its eigenfunction expansion as

Tf =
∞∑

j=1

λ−1
j (f, ϕj)ϕj ,
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with λj and ϕj as above, and it follows at once that T is a bounded operator from
L2(Ω) into H2(Ω) ∩H1

0 (Ω). In terms of T we may write the problem (1.1) as

Tut(t) +

∫ t

0

β(t− s)u(s)ds = 0, u(0) = u0. (1.11)

Define the discrete elliptic operatorAh : Sh → Sh of A by (Ahψ, χ) = A(ψ, χ) ∀ψ ,
χ ∈ Sh. Related to the definition of the discrete elliptic operator Ah is that of the
solution operator Th : L2(Ω) → Sh of the discrete elliptic problem, namely

A(Thf, χ) = (f, χ) ∀χ ∈ Sh, f ∈ L2(Ω).

Th approximates the exact solution operator T = A−1 : L2(Ω) → H1
0 (Ω)∩H

2(Ω)
in the sense that (see [37, Chapter 2])

‖Thf − Tf‖ ≤ Ch2‖f‖, for f ∈ L2(Ω). (1.12)

The operator T is selfadjoint and positive definite on L2(Ω), and Th is selfad-
joint, positive semidefinite on L2(Ω) and positive definite on Sh. The semidiscrete
problem (1.8) can now be written in the form

Thuh,t(t) +

∫ t

0

β(t− s)uh(s) ds = 0, uh(0) = u0h ∈ Sh, (1.13)

where u0h is a suitable approximation to u0. It is easy to see that the finite-
dimensional problem (1.13) has a unique solution.

We also recall the elliptic regularity property T : L2(Ω) → H1
0 (Ω) ∩ H

2(Ω) and
the associated inequality

‖Tf‖2 ≤ C‖f‖, for f ∈ L2(Ω). (1.14)

We derive the estimates for the first order time derivative of the error as follows.

Theorem 1.2. Assume that β(t) satisfies (1.2) and let β̇(t) be absolutely continuous
on (0, ∞) in case µ < ∞. Then, for the solutions of (1.1) and (1.8), with u0h =
P0hu0, we have ∫ ∞

0

‖Thu
′
h(t)− Tu′(t)‖dt ≤ Ch2‖Au0‖. (1.15)

In the following, â(s) = β̂(s)/s denotes the Laplacian transform of a(t) =∫ t

0
β(τ) dτ . We remark that the error estimate in Theorem 1.1 (ii) requires u0 ∈

Ḣ3(Ω), such that the initial data must satisfy u0 = Au0 = 0 on ∂Ω.
The remainder of this paper is then devoted to the proofs of Theorems 1.1 and 1.2.

Our proofs are based on the transform methods developed in [30, 36], together with
some basic error estimates for the finite element approximations of the elliptic prob-
lems, for example (1.12), and the Paley-Wiener Lemma which is true in any Banach
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algebra L1(R+, B(X)), the space of all measurable functions f : R+ → B(X) such
that

∫∞

0
‖f(t)‖B(X) dt < ∞ with ‖ · ‖B(X) denoting the norm in B(X) which is the

space of all bounded linear operators from a Banach space X to X , and is stated as
follows.

Lemma 1.1. Suppose that K ∈ L1(R+, B(X)) is such that I − K̂(s) is invertible
for each Re s ≥ 0. Then, there is a unique solution L ∈ L1(R+, B(X)) such that
L = K +K ∗ L = K + L ∗K holds in L1(R+, B(X)).

For the proof of this result we refer the readers to Prüss [2, Theorem 0.7].

2. The proof of Theorem 1.1.

This section is organized as follows. First, in Section 2.1. we prove Theo-
rem 1.1. (ii), that is, the regular case µ + κ < ∞. In Section 2.2., we turn to
the singular case, i.e., µ+ κ = ∞.

2.1. The regular case

In this section we assume that µ+ κ <∞ and prove Theorem 1.1 (ii).
It follows from the proof of the regular case of Theorem 11 in [30] that

u(t) = u0(t) + u1(t) = (U0(t) + U1(t)) u0 = U(t) u0,

where
u1(t) = U1(t)u0 = C(µ t) exp (−κ t/µ) u0, (2.1)

with the cosine family C(µt) = cos
(
A

1

2µt
)
. Let w1(t) = C(µt)u0. Then, w1(t)

satisfies

w1,t(t) + µ2

∫ t

0

Aw1(s)ds = 0, w1(0) = u0. (2.2)

Similarly, we can also write

uh(t) = u0h(t) + u1h(t) = (U0h(t) + U1h(t))P0hu0,

where
u1h(t) = U1h(t)P0hu0 = Ch(µt) exp (−κ t/µ)P0hu0, (2.1)h

with Ch(µt) = cos
(
A

1

2

hµt
)
. Now, let w1h(t) = Ch(µt)P0hu0. Then, w1h(t) satisfies

w1h,t(t) + µ2

∫ t

0

Ahw1h(s)ds = 0, w1h(0) = P0hu0. (2.2)h

Hence, by Theorem 2.1. in [23],

‖w1h(t)− w1(t)‖ ≤ Ch2
{
‖u0‖2 +

∫ t

0

‖w1,t(s)‖2 ds

}
, for t > 0, (2.3)
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since the function 1 is a positive-definite kernel. Moreover, we note that

w1,t(t) = − sin
(
A

1

2µt
)
µA

1

2u0,

and

‖w1,t(s)‖2 ≤ C‖u0‖3,

∫ t

0

‖w1,t(s)‖2ds ≤ Ct‖u0‖3,

and

‖w1h(t)− w1(t)‖ ≤ Ch2 {‖u0‖2 + t‖u0‖3} , for t > 0. (2.4)

Thus, we establish that

‖u1h(t)− u1(t)‖ = ‖(w1h(t)− w1(t)) exp (−κ t/µ)‖

≤ Ch2 {‖u0‖2 + t‖u0‖3} exp (−κ t/µ) , for t > 0,
(2.5)

and it suffices to prove that

∫ ∞

0

‖u0h(t)− u0(t)‖dt ≤ Ch2‖u0‖3. (2.6)

To do this, we use the fact that Ĉ(s) = s(s2I +A)−1 and the operational calculus to
get

Û1(s) =
1

µ

(
ĝ−1(s) + ĝ(s)A

)−1
, Re s ≥ 0, (2.7)

where ĝ(s) = µ2(µs+ κ)−1 is the transform of g(t) = µ exp(−κt/µ). Similarly,

Û1h(s) =
1

µ

(
ĝ−1(s) + ĝ(s)Ah

)−1
, Re s ≥ 0. (2.8)

We shall obtain a convolution equation for U0(t) − U0h(t)P0h and use the Paley-
Wiener Lemma to deduce (2.6). In fact, following the argument in [30], we have
that

Û0(s) = R̂1(s) + R̂2(s)Û0(s), (2.9)

where

R̂1(s) = (1 + κβ̂(s))−1R̂(s)Û1(s),

R̂2(s) = (1 + κβ̂(s))−1
(
R̂(s) + κβ̂(s)

)
,

R̂(s) = µ−4
{
µ2 ˆ̈β + 2κµ

ˆ̇
β(s) + κ2β̂(s)

}
Û1(s)− µ−3

{
µ
ˆ̇
β(s) + κβ̂(s)

}
.

Also, we have

Û0h(s) = R̂1h(s) + R̂2h(s)Û0h(s). (2.10)
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This formula for Ûoh(s) is of the same form as (2.9) with Ah instead of A. Subtract-
ing (2.10) from (2.9) we get

Û0(s)− Û0h(s)P0h = (R̂1(s)− R̂1h(s)P0h) + (R̂2(s)− R̂2h(s)P0h)Û0(s)

+R̂2h(s)(P0h − I)Û0(s) + R̂2h(s)
(
Û0(s)− Û0h(s)P0h

)
.

(2.11)
As in [30] we see that R2h(t) ∈ L1(R+, L(Sh)),

∫∞

0
‖R2h(t)‖dt ≤ C and

I − R̂2h(s) =
(
1 + κβ̂(s)

)−1 (
s+ β̂(s)Ah

)
Û1h(s), Re s ≥ 0,

so I − R̂2h(s) is invertible for each s ∈ Π = {s : Re s ≥ 0} and h > 0. Now, by
Lemma 1.1., there exists Q1h(t) ∈ L1(R+, L(Sh)) such that

Q1h(t) = R2h(t) +Q1h ∗R2h(t) = R2h(t) +R2h ∗Q1h(t), t ≥ 0.

Following the proof of the continuous case [2, Theorem 0.7] we can obtain that∫∞

0
‖Q1h(t)‖dt ≤ C. Thus, solving (2.11) for Û0(s)− Û0h(s)P0h, we have that

Û0(s)− Û0h(s)P0h =
(
R̂1(s)− R̂1h(s)P0h

)
+ R̂2h(s)(P0h − I)Û0(s)

+
(
R̂2(s)− R̂2h(s)P0h

)
Û0(s)

+Q̂1h(s)
[(
R̂1(s)− R̂1h(s)P0h

)

+ R̂2h(s)(P0h − I)Û0(s) +
(
R̂2(s)− R̂2h(s)P0h

)
Û0(s)

]
.

(2.12)
Define

l̂(s) = (1 + κβ̂(s))−1µ−4
{
µ2 ˆ̈β + 2κµ

ˆ̇
β(s) + κ2β̂(s)

}
,

m̂(s) = (1 + κβ̂(s))−1 µ−3
{
µ ˆ̇β(s) + κ β̂(s)

}
.

From the proof of [30, Theorem 11] we know that l(t) and m(t) belong to L1(R+).
Since

R̂1(s)− R̂1h(s)P0h = (1 + κβ̂(s))−1
[
R̂(s)Û1(s)− R̂h(s)Û1h(s)P0h

]

= l̂(s)
[(
Û1(s)− Û1h(s)P0h

)
Û1(s) + Û1h(s)P0h(

Û1(s)− Û1h(s)P0h

)]
− m̂(s)

[
Û1(s)− Û1h(s)P0h

]
,

(2.13)

and by (2.1) ∫ ∞

0

‖A
3

2U1(t)u0‖dt ≤ C‖A
3

2u0‖, (2.14)

it follows from (2.13), (2.14), (2.5) and [30, Theorem 11] that
∫ ∞

0

‖ (R1(t)− R1h(t)P0h) u0‖dt ≤ Ch2‖A
3

2u0‖. (2.15)
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Next we write

R̂2(s)− R̂2h(s)P0h = l̂(s)
[
Û1(s)− Û1h(s)P0h

]
, (2.16)

which, together with (2.5), implies

∫ ∞

0

‖ (R2(t)− R2h(t)P0h) u0‖dt ≤ Ch2‖A
3

2u0‖. (2.17)

Following from the proof of Theorem 11 in [30], we can also obtain

∫ ∞

0

‖A
3

2U0(t)u0‖dt ≤ C‖A
3

2u0‖, (2.18)

and
∫ ∞

0

‖(I − P0h)U0(t)u0‖dt ≤ Ch2
∫ ∞

0

‖Au0(t)‖dt ≤ Ch2‖Au0‖. (2.19)

Thus, combining (2.12), (2.13) and (2.16) with the estimates (2.15), (2.17), (2.18)
and (2.19), we can gain our desired estimate (2.6).

2.2. The singular case

In this subsection, we consider the singular case that µ+ κ = ∞. First of all, we
introduce some notations and recall results in Section 3 of [30]. Define h0(s, x) and
h(s, x) for the kernel β(t) (see, for example, page 327 of [30]) as follows:

h0(s, x) = exp
(
−x/â(s)

1

2

)
, h(s, x) =

1

sâ(s)
1

2

h0(s, x). (2.20)

By Theorems 3 and 4 of [30], we can write

ŵ0t(s, x) = h0(s, x), ŵt(s, x) = h(s, x). (2.21)

See Theorem 3 of [30] for the definitions of the functions w0(t, x) and w(t, x). Notice,
in particular, that for each x > 0, w0(t, x) and w(t, x) are nondecreasing, continuous
functions of t ≥ 0, and are absolutely continuous for t 6= x/µ in the case that µ <∞.

Now let ω be a positive number. Define Uω(t) and Rω(t) as those in (7.7) and (7.9)
of [30], respectively, by

Uω(t) =

∫ ∞

0

e−ω τC(τ)wt(t, τ)dτ, Rω(t) =

∫ ∞

0

e−ωτC(τ)w0t(t, τ)dτ.

Similarly, we define Rω,h(t) by

Rω,h(t) =

∫ ∞

0

e−ωτCh(τ)w0t(t, τ)dτ,
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where Ch(τ) = cos
(
A

1

2

h τ
)

is cosine family, defined by the discrete elliptic opera-

tor Ah. We write u(t) = U(t)u0 and uh(t) = Uh(t)P0hu0.
Since Ĉ(s) = s(s2 + A)−1, Re s > 0 (see [38, Proposition 2.6]). Using (2.20)

and (2.21) (see [30, the formula (8.3)]), we have via some calculations as those in [30]
that

Û(s) = h(s)Ûω(s) + ω(1 + h(s))R̂ω(s)Û(s), (2.22)

where

Û(s) = (I + â(s)A)−1/s =
(
sI + β̂(s)A

)−1

,

Ûω(s) = s−1h(s) (I + h2(s)â(s)A)
−1
,

R̂ω(s) = â(s)
1

2h(s) (I + h2(s)â(s)A)
−1
.

Here, as that on page 341 of [30], h(s) denotes

h(s) =
(
1 + ωâ(s)

1

2

)−1

.

Now we multiply (2.22) by ω(â(s))
1

2h(s) to yield

Û(s) = ω(â(s))
1

2h(s)h1(s)R̂ω(s)

+
[
h(s)I + ωâ(s)

1

2h(s)ω(1 + h(s))R̂ω(s)
]
Û(s),

(2.23)

where like that on page 341 of [30] h1(s) is defined as

h1(s) = h(s)/sâ(s)
1

2 .

Also, we have that

Ûh(s) = ω(â(s))
1

2h(s)h1(s)R̂ω, h(s)

+
[
h(s)I + ωâ(s)

1

2h(s)ω(1 + h(s))R̂ω,h(s)
]
Ûh(s).

(2.24)

Set

Ẑ1,h(s) = h1(s)ωâ(s)
1

2h(s)
[
R̂ω,h(s)P0h − R̂ω(s)

]
,

Ẑ2,h(s) = ω(1 + h(s))ωâ(s)
1

2h(s)
[
R̂ω,h(s)P0h − R̂ω(s)

]
Û(s),

Ẑ3, h(s) = h(s)I + ω(1 + h(s))ωâ(s)
1

2h(s)R̂ω,h(s),

Ẑ4,h(s) = ω(1 + h(s))ωâ(s)
1

2h(s)R̂ω,h(s)(I − P0h)Û(s).

Subtracting (2.23) from (2.24) we can obtain

Ûh(s)P0h − Û(s) = Ẑ1,h(s) + Ẑ2,h(s) + Ẑ4,h(s) + Ẑ3,h(s)
(
Ûh(s)P0h − Û(s)

)
. (2.25)
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Now, as that shown on page 341 of [30], we have

Z3,h(t) ∈ L1(R+L(Sh)),

∫ ∞

0

‖Z3,h(t)‖dt ≤ C <∞,

and

I − Ẑ3, h(s) =
h(s)â(s)

1

2ωh2(s)

I + h2(s)â(s)Ah
(I + â(s)Ah)

= ωh2(s)(I + â(s)Ah)R̂ω,h(s), Re s ≥ 0.

(2.26)

Thus, I − Ẑ3,h(s) is invertible for Re s ≥ 0 and h > 0. Lemma 1.1 indicates that
there is a Y3,h(t) ∈ L1(R+, L(Sh)) such that

Y3,h(t) = Z3,h(t) + Y3,h ∗ Z3,h(t) = Z3,h(t) + Z3,h ∗ Y3,h(t), t ≥ 0, (2.27)

and we can follow the proof of [2, Theorem 0.7] to obtain
∫ ∞

0

‖Y3,h(t)‖dt ≤ C <∞.

Therefore, solving (2.25) for Ûh(s)P0h − Û(s), we obtain

Ûh(s)P0h − Û(s) = Ẑ1,h(s) + Ẑ2,h(s) + Ẑ4, h(s)

+Ŷ3,h(s)
(
Ẑ1,h(s) + Ẑ2,h(s) + Ẑ4,h(s)

)
.

(2.28)

Also, we have

Ẑ1,h(s) = ωh1(s)â(s)
1

2h(s)

[
1

â(s)
1

2 h(s)

(
P0h

q̂(s)I+Ah
− 1

q̂(s)I+A

)]

= ωh1(s)
[

Th

I+q̂(s)Th
− T

I+q̂(s)T

]

= ωh1(s)
[(

Th

I+q̂(s)Th
(P0h − I)A−1

)
A

+ Th

I+q̂(s)Th
(T − Th)A+

(
T 2

h

I+q̂(s)Th
− T 2

I+q̂(s)T

)
A
]

= ωh1(s)
{
â(s)

1

2h(s)R̂ω,h(s)P0h [(P0h − I)A−1 + 2(T − Th)]A

+ â(s)
1

2h(s)(Th − T )R̂ω(s)A+ R̂ω,h(s)P0h(T − Th)R̂ω(s)A
}
,

(2.29)

where q̂(s) = 1
â(s)h2(s)

. It follows from (1.12) and the proof shown on pages 341–342

in [30] that ∫ ∞

0

‖Z1,h(t)u0‖dt ≤ Ch2‖Au0‖. (2.30)

Similarly, we can obtain
∫ ∞

0

‖Zi,h(t)u0‖dt ≤ Ch2
∫ ∞

0

‖AU(t)u0‖dt ≤ Ch2‖Au0‖, i = 2, 4, (2.31)
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where the second inequality of (2.31) follows from Theorem 11 of [30]. Combining
(2.29)–(2.31) with (2.28) yields

∫ ∞

0

‖uh(t)− u(t)‖dt ≤ Ch2‖Au0‖, (2.32)

and thus Theorem 1 (i) is proved.

3. The proof of Theorem 1.2.

First of all, we consider the regular case that µ + κ < ∞, and then we discuss
the singular case that µ+ κ = ∞.

3.1. The regular case

Define

V1(t) = µĊ(µt) exp(κt/µ),

and write

V (t) = V0(t) + V1(t),

where u′(t) = V (t)u0. Note that ˆ̇C(s) = −A(s2I + A)−1. So, we have

V̂1(s) =
ˆ̇C(ĝ(s)−1) = −A(ĝ−2(s)I + A)−1, (3.1)

where, as before, ĝ(s) = µ2(µs+ κ)−1. We multiply (3.1) with T to get

T V̂1(s) =
−ĝ2(s)T

ĝ2(s)I + T
. (3.2)

Similarly, with u0h = P0hu0 and u′h(t) = Vh(t)P0hu0, we have Vh(t) = V0h(t) + V1h(t)

and V1h(t) = µĊh(µt) exp(−κt/µ), where Ċh(µt) = −µ sin(µtA
1

2

h )A
1

2

h , and

ThV̂1h(s) =
−ĝ2(s)Th
ĝ2(s)I + Th

. (3.3)

Subtracting (3.2) from (3.3) and doing some simple computations, we can obtain
that

ThV̂1h(s)P0h − T V̂1(s) =
(
V̂1h(s)ThP0hT − V̂1(s)T

2
)
A

=
[
V̂1h(s)Th(P0h − I)T + V̂1h(s)Th(T − Th) + V̂1h(s)T

2
h − V̂1(s)T

2
]
A

=
[
V̂1h(s)Th(P0h − I)T + V̂1h(s)Th(T − Th)

]
A

+
[
V̂1h(s)Th(Th − T ) + (Th − T )V̂1(s)T + µÛ1h(s)(Th − T )µÛ1(s)

]
A.

(3.4)
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By means of the spectral theorems and the definitions in [30, 36], we can also obtain
that ∫ ∞

0

‖V1h(t)Th‖dt ≤ C <∞,

∫ ∞

0

‖U1h(t)‖dt ≤ C < ∞,
∫ ∞

0

‖V1(t)T‖dt ≤ C <∞,

∫ ∞

0

‖U1(t)‖dt ≤ C <∞.
(3.5)

In addition, from (1.13), (3.4), and (3.5) we know that
∫ ∞

0

‖ (V1h(t)ThP0h − V1(t)T )u0‖dt ≤ Ch2‖Au0‖. (3.6)

Thus, to complete the proof of Theorem 1.2 in the regular case, it suffices to show
that ∫ ∞

0

‖ (V0hThP0h − V0(t)T ) u0‖dt ≤ Ch2‖Au0‖. (3.7)

Combining (2.7) with (3.2) leads to

A−1V̂1(s) = −µĝ(s)Û1(s). (3.8)

Since V̂ (s) = β̂(s)(−A)
(
sI + β̂(s)A

)−1

, we have

V̂0(s) =
(
V̂ −1
1 (s)− V̂ −1(s)

)
V̂1(s)V̂ (s) = −

{
ĝ−2(s)− s/β̂(s)

}
A−1V̂1(s)V̂ (s),

which, together with some manipulations, yields

V̂0(s)T = R̂4(s)T + R̂3(s)V̂0(s)T, (3.9)

where
R̂3(s) = κ2µ−3ĝ(s)Û1(s) + µr̂0(s)Û1(s),

R̂4(s) = R̂3(s)V̂1(s),

and r0(t) is the scalar function whose transform is

r̂0(s) = ĝ(s)
{
ĝ−2(s)− s/β̂(s)− κ2/µ4

}
.

Moreover, from Lemma 10.1 in [2] we know that

r0(t) ∈ L1(R+) (3.10)

(see [39, Hannsgen and Wheeler (1990), page 506, the proof of (3.11)]).
Similar to the arguments of Theorem 1.1 we can also get that

V̂0h(s)ThP0h − V̂0(s)T = R̂4h(s)ThP0h − R̂4(s)T

+
(
R̂3h(s)P0h − R̂3(s)

)
V̂0(s)T + R̂3h(s)

(
V̂0h(s)ThP0h − V̂0(s)T

)

+R̂3h(s) (I − P0h) V̂0(s)T.

(3.11)
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We use (3.10) and (2.1)h to gain

R3h(t) ∈ L1(R+, L(Sh)) and

∫ ∞

0

‖R3h(t)‖dt ≤ C <∞.

To see that I−R̂3h(s) is invertible for s ∈ Π = {s : Re s ≥ 0} and h > 0, we note that
V̂h(s)− V̂1h(s) = V̂0h(s) = R̂3h(s)V̂h(s). So, we have that I − R̂3h(s) = V̂1h(s)V̂

−1
h (s),

which clearly indicates that I − R̂3h(s) is invertible for s ∈ Π = {s : Re s ≥ 0} and
h > 0.

According to Lemma 1.1, there exists Q2h(t) ∈ L1(R+, L(Sh)) such that

Q2h(t) = R3h(t) +Q2h ∗R3h(t) for t ≥ 0, and

∫ ∞

0

‖Q2h(t)‖dt ≤ C <∞.

Therefore, solving (3.11) for V̂0h(s)ThP0h − V̂0(s)T , we obtain

V̂0h(s)ThP0h − V̂0(s)T = R̂3h(s) (I − P0h) V̂0(s)T + Ẑ4h(s) + Ẑ5h(s)

+Q̂2h(s)
[
R̂3h(s) (I − P0h) V̂0(s)T + Ẑ4h(s) + Ẑ5h(s)

]
,

(3.12)

where
Ẑ4h(s) = R̂4h(s)ThP0h − R̂4(s)T,

Ẑ5h(s) =
(
R̂3h(s)P0h − R3(s)

)
V̂0(s)T.

Next we show that ∫ ∞

0

‖Z4h(t)u0‖dt ≤ Ch2‖Au0‖, (3.13)

and ∫ ∞

0

‖Z5h(t)u0‖dt ≤ Ch2‖Au0‖. (3.14)

Then, (3.7) follows from (3.12), (3.13), and (3.14). So, we reduce (3.7) to (3.13)
and (3.14).

Write

Ẑ5h(s)u0 = κ2µ−3ĝ(s)
[
Û1h(s)P0h − Û1(s)

]
V̂0(s)Tu0

+µr̂0(s)
[
Û1h(s)P0h − Û1(s)

]
V̂0(s)Tu0.

We use (2.5), (3.10), and Theorem 3.2 in [36] to get

∫ ∞

0

‖Z5h(t)u0‖ dt ≤ Ch2
∫ ∞

0

∥∥∥A 3

2V0(t)Tu0

∥∥∥ dt

= Ch2
∫ ∞

0

∥∥∥
(
V0(t)T

1

2

)
Au0

∥∥∥ dt ≤ Ch2‖Au0‖.
(3.15)
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Thus, (3.14) is established. Furthermore, from (3.9) we can derive

Ẑ4h(s)u0 =
[
R̂3h(s)V̂1h(s)ThP0h − R̂3(s)V̂1(s)T

]
u0

=
(
R̂3h(s)P0h − R3(s)

)
V̂1(s)Tu0

+R̂3h(s)P0h

(
V̂1h(s)ThP0h − V̂1(s)T

)
u0.

So, (3.6) and (3.15) with V1(t) instead of V0(t) imply (3.13). This, in turn, gives
us (3.7), which completes the proof of Theorem 1.2 in the regular case.

3.2. The singular case

Let µ+κ = ∞. As in the proof of Theorem 3.1 of [39] we define Vω(t) as follows:

Vω(t) =

∫ ∞

0

e−ωτ Ċ(τ)w0t(t, τ)dτ.

Similarly, like the derivation of (3.9), we can write

V̂ − V̂ω =
(
V̂ −1
ω − V̂ −1

)
V̂ωV̂ .

It follows from (2.20), (2.21), and ˆ̇C(s) = −A(s2I + A)−1 for Re s > 0 that

V̂ − V̂ω = −


ω2 + 2ω

(
s

β̂(s)

) 1

2


A−1V̂ωV̂ .

Since

−A−1V̂ω =
(
ω + â(s)−

1

2

)−1

R̂ω,

it is easy to verify that

V̂ (s)T = V̂ω(s)T + Ŝ2(s)V̂ (s)T, (3.16)

where
Ŝ2(s) = ω(1 + h(s))R̂ω(s).

The proof of the remainder part is almost identical to that of (3.7). We only need
to derive the following two more estimates,

∫ ∞

0

‖ (RωhP0h − Rω) ∗ V (t)Tu0‖dt ≤ Ch2‖Au0‖, (3.17)

and ∫ ∞

0

‖ (Vωh(t)ThP0h − Vω(t)T )u0‖dt ≤ Ch2‖Au0‖. (3.18)
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To verify the claim (3.17), we note that

∫ ∞

0

‖ (Rωh(t)P0h − Rω(t)) v‖dt

=

∫ ∞

0

∥∥∥∥
∫ ∞

0

e−ωτ (Ch(τ)P0h − C(τ))w0t(t, τ)vdτ

∥∥∥∥ dt

≤ C

∫ ∞

0

∫ ∞

0

e−ωτw0t(t, τ)τh
2
∥∥∥A 3

2v
∥∥∥ dτdt ≤ Ch2

∥∥∥A 3

2v
∥∥∥ ,

(3.19)

where we have used (2.4) and Theorem 3 of [30]. Thus, combining (3.19) and (1.6)
leads to (3.17).

Next, our discussions turn to (3.18). From the derivation of (3.16) we know that

V̂ω(s) = −Aâ(s)
1

2h(s)R̂ω(s) = −Aâ(s)h(s)2
T

â(s)h(s)2I + T
,

from which we claim that

V̂ωh(s)ThP0h − V̂ω(s)T

=
[
V̂ωh(s)Th(P0h − I)A−1 + V̂ωh(s)Th(T − Th)

]
A

+
[
V̂ωh(s)Th(T − Th) + (T − Th)V̂ω(s)T + R̂ωh(s)(Th − T )R̂ω(s)

]
A.

(3.20)

We recall from the proofs of Theorem 11 in [30] and Theorem 3.2 in [36] that

∫ ∞

0

‖Vω(t)T‖dt ≤ C <∞,

∫ ∞

0

‖Vωh(t)Th‖dt ≤ C <∞,
∫ ∞

0

‖Rω(t)‖dt ≤ C <∞,

∫ ∞

0

‖Rωh(t)‖dt ≤ C <∞.
(3.21)

These estimates, together with (1.12) and (3.20), yield (3.18). And thus, we complete
the proof of Theorem 1.2.
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Mathematics, vol. 87, Birkhäuser Verlag, Basel; Boston; Berlin, 1993.

159



[3] Allegretto, W., Lin, Y., and Zhou, A.: Long-time stability of finite element
approximations for parabolic equations with memory. Numer. Meth. Partial
Diff. Eq. 15 (1999), 333–354.

[4] Cannon, J.R. and Lin, Y.: Non-classical H1 projection and Galerkin methods
for nonlinear parabolic integro-differential equations. Calcolo 25 (1988), 187–
201.

[5] Cannon, J.R. and Lin, Y.: A priori L2 error estimates for finite element methods
for nonlinear diffusion equations with memory. SIAM J. Numer. Anal. 27 (1990),
595–607.

[6] Lin, T., Lin, Y., Rao, M., and Zhang, S.: Petrov-Galerkin methods for linear
Volterra integro-differential equations. SIAM J. Numer. Anal. 38 (2000), 937–
963.

[7] Lin, Y.: On maximum norm estimates for Ritz-Volterra projections and applica-
tions to some time-dependent problems. J. Comput. Math. 15 (1997), 159–178.

[8] Lin, Y., Thomée, V., and Wahlbin, L.: Ritz-Volterra projection onto finite
element spaces and applications to integro-differential and related equations.
SIAM J. Numer. Anal. 28 (1991), 1047–1070.

[9] LeRoux, M.N. and Thomée, V.: Numerical solutions of semi-linear integro-
differential equations of parabolic type with non-smooth data. SIAM J. Numer.
Anal. 26 (1989), 1291–1309.

[10] Lin, Q. and Yan, N.: The construction and analysis of finite element methods
of higher efficiency. Hebei University Publishers, 1996.

[11] Lin, Q. and Zhang, S.: An immediate analysis for global superconvergence for
integro-differential equations. Appl. Math. 42 (1997), 1–21.

[12] Lin, Q., Zhang, S., and Yan, N.: High accuracy analysis for integro-differential
equations. Acta Math. Appl. Sinica 14 (1998), 202–211.

[13] Lin, Q., Zhang, S., and Yan, N.: Methods for improving approximate accuracy
for hyperbolic integro-differential equations. Syst. Sci. Math. Sci. 10 (1997),
282–288.

[14] Lin, Q., Zhang, S., and Yan, N.: Extrapolation and defect correction for diffu-
sion equations with boundary integral conditions. Acta Math. Sci. 17 (1997),
409–412.

[15] Neta, B. and Igwe, J.: Finite difference versus finite elements for solving non-
linear integro-differential equations. J. Math. Anal. Appl. 112 (1985), 607–618.

160



[16] Pani, A.K., Thomée, V., and Wahlbin, L.: Numerical methods for hyperbolic
and parabolic integro-differential equations. J. Integral Eq. Appl. 4 (1992), 533–
584.

[17] Sloan, I. H. and Thomée, V.: Time discretization of an integro-differential equa-
tion of parabolic type. SIAM J. Numer. Anal. 23 (1986), 1052–1061.

[18] Ewing, R., Lin, Y., Sun, T., Wang, J., and Zhang, S.: Sharp L2 error estimates
and super-convergence of mixed finite element methods for nonFickian flows in
porous media. SIAM J. Numer. Anal. 40 (2002), 1538–1560.

[19] Ewing, R., Lin, Y., and Wang, J.: A numerical approximation of nonFickian
flows with mixing length growth in porous media. Acta Math. Univ. Comenian.
(N. S.) 70 (2001), 75–84.

[20] Ewing, R., Lin, Y., Wang, J., and Yang, X. Z.: Backward Euler mixed FEM
and regularity of parabolic integro-differential equations with non-smooth data.
Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 13 (2006), 283-295.

[21] Ewing, R., Lin, Y., Wang, J., and Zhang, S.: L∞-error estimates and super-
convergence in maximum norm of mixed finite element methods for nonFickian
flows in porous media. Int. J. Numer. Anal. Model. 2 (2005), 301–328.

[22] Sinha, R., Ewing, R., and Lazarov, R.: Some new error estimates of a semi-
discrete finite volume element method for a parabolic integro-differential equa-
tion with non-smooth initial data. SIAM J. Numer. Anal. 43 (2006), 2320–2343.

[23] McLean, W. and Thomée, V.: Numerical solution of an evolution equation with
a positive type memory term. J. Austral. Math. Soc. Ser. B 35 (1993), 23–70.

[24] Yan, Y. and Fairweather, G.: Orthogonal spline collocation methods for some
partial integro-differential equations. SIAM J. Numer. Anal. 29 (1992), 755–768.

[25] Jin Choi, U. and MacCamy, R.: Fractional order Volterra equations. In: G. Da
Prato and M. Iannelli (Eds.), Volterra Integro-differential equations in Banach
Spaces and Applications, Pitman Research Notes in Mathematics, vol. 190,
pp. 231–245. Longman, Harlow, UK, and Wiley, New York, 1989.

[26] Lubich, C., Sloan, I. H., and Thomée, V.: Nonsmooth data error estimates for
approximations of an evolution equation with a positive-type memory term.
Math. Comp. 65 (1996), 1–17.

[27] Xu, D.: Uniform L1 error bounds for the semi-discrete solution of a Volterra
equation with completely monotonic convolution kernel, Comput. Math. Appl.,
43 (2002), 1303–1318.

161



[28] Xu, D.: Uniform l1 behaviour for time discretization of a Volterra equation
with completely monotonic kernel: I. Stability. IMA J. Numer. Anal. 22 (2002),
133–151.

[29] Miller, R.K.: On Volterra integral equations with nonnegative integrable resol-
vents. J. Math. Anal. Appl. 22 (1968), 319–340.

[30] Prüss, J.: Positivity and regularity of hyperbolic Volterra equations in Banach
spaces. Math. Ann. 279 (1987), 317–344.

[31] Clément, P. and Nohel, J.A.: Abstract linear and nonlinear Volterra equations
preserving positivity. SIAM J. Math. Anal. 10 (1979), 365–388.

[32] Clément, P. and Mitidieri, E.: Qualitative properties of solutions of Volterra
equations in Banach spaces. Israel J. Math. 64 (1988), 1–24.

[33] McLean, W. and Thomée, V.: Asymptotic behaviour of numerical solutions of
an evolution equation with memory. Asymptot. Anal. 14 (1997), 257–276.

[34] Carr, R.W. and Hannsgen, K.B.: A nonhomogeneous integrodifferential equa-
tion in Hilbert space. SIAM J. Math. Anal. 10 (1979), 961–984.

[35] Carr, R.W. and Hannsgen, K.B.: Resolvent formulas for a Volterra equation in
Hilbert space. SIAM J. Math. Anal. 13 (1982), 459–483.

[36] Prüss, J.: Regularity and integrability of resolvents of linear Volterra equations.
In: G. Da Prato and M. Iannelli (Eds.), Volterra Integrodifferential Equations
in Banach Spaces and Applications, Pitman Research Notes in Mathematics,
vol. 190, pp. 339–367. Longman, Harlow, UK, and Wiley, New York, 1989.

[37] Thomée, V.: Galerkin finite element methods for parabolic problems. In: Lecture
Notes in Math., vol. 1054. Springer-Verlag, Berlin and New York, 1984.

[38] Travis, C.C. and Webb, G. F.: Second order differential equations in Banach
spaces. In: V. Lakshmikantham (Ed.), Nonlinear Equations in Abstract Spaces,
pp. 331–361. Academic Press, New York, 1978.

[39] Hannsgen, K.B. andWheeler, R. L.: Viscoelastic and boundary feedback damp-
ing: precise energy decay rates when creep modes are dominant. J. Integral eq.
Appl. 2 (1990), 495–527.

162


