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Abstract

This article presents the numerical solution of laminar incompressible viscous flow
in a branching channel for generalized Newtonian fluids. The governing system of
equations is based on the system of balance laws for mass and momentum. The gen-
eralized Newtonian fluids differ through choice of a viscosity function. A power-law
model with different values of power-law index is used. Numerical solution of the de-
scribed models is based on cell-centered finite volume method using explicit Runge–
Kutta time integration. The unsteady system of equations with steady boundary
conditions is solved by finite volume method. Steady state solution is achieved for
t → ∞. In this case the artificial compressibility method can be applied. For the time
integration an explicit multistage Runge–Kutta method of the second order of accu-
racy in the time is used. In the case of unsteady computation two numerical methods
are considered, artificial compressibility method and dual-time stepping method. The
flow is modelled in a bounded computational domain. Numerical results obtained by
this method are presented and compared.

1. Introduction

Generalized Newtonian fluids can be subdivided according to the viscosity be-
haviour. For Newtonian fluids the viscosity is constant and is independent of the
applied shear stress (examples: water, kerosene etc). Shear thinning fluids are char-
acterized by decreasing viscosity with increasing shear rate (ketchup, honey, blood
etc). Shear thickening fluids are characterized by increasing viscosity with increasing
shear rate (wet sand etc.). For more details see e.g. [1].

2. Mathematical model

The governing system of equations is the system of balance laws of mass and
momentum for incompressible fluids [2]:

div u = 0 (1)
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ρ
∂u

∂t
+ ρ(u.∇)u = −∇P + div T (2)

where P is pressure, ρ is constant density, u is velocity vector. The symbol T

represents the stress tensor.
The commonly used model corresponding to Newtonian fluid is Newtonian model:

T = 2µ D (3)

where µ is dynamic viscosity and tensor D is symmetric part of the velocity gradient
defined by the relation

D =
1

2
(∇u+∇u

T ) =
1

2

(

2ux uy + vx
uy + vx 2vy

)

(4)

This model could be generalized to take into account shear thinning and shear
thickening behaviour

T = 2µǫµ D. (5)

For this case the viscosity µ is no more constant, but is defined by viscosity func-
tion µ(γ̇) according to the power-law model, [7]

µ = µ(γ̇) =
(√

trD2
)r

, (6)

where γ̇ =
√
trD2 is shear rate, µǫ is a constant, e.g. the dynamic viscosity for

Newtonian fluid. The symbol tr D2 denotes trace of the tensor D2. The exponent r
is the power-law index. This model includes Newtonian fluids as a special case
(r = 0). For r > 0 the power-law fluid is shear thickening, while for r < 0 it is shear
thinning.

3. Numerical solution

3.1. Steady case

In this case the artificial compressibility method can be applied. It means that
the continuity equation is completed by term 1

β2pt. For more details see e.g. [3].

This yields in the conservative form (non-dimensional):

R̃βWt + F c
x +Gc

y =
1

Re
(F v

x +Gv
y), (7)

R̃β = diag(
1

β2
, 1, 1), β ∈ R+ (8)

where W is vector of unknowns, p = P/ρ is pressure, u, v are velocity components,
F c, Gc are inviscid fluxes and F v, Gv are viscous fluxes defined as

W =







p
u
v





 , F c =







u
u2 + p
uv





 , Gc =







v
uv

v2 + p





 , (9)
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F v =







0
2µ(γ̇)ux

µ(γ̇)(vx + uy)





 , Gv =







0
µ(γ̇)(uy + vx)

2µ(γ̇)vy





 (10)

The symbol Re denotes Reynolds number defined by the expression

Re =
ρUL

µǫ

, (11)

where U, L are reference velocity and length, µǫ is dynamic Newtonian viscosity
and ρ is constant density. The parameter β has dimension of a speed and denotes
the artificial speed of sound. In the case of non-dimensional equations, β is then
divided by a reference velocity U . This is usually an upstream velocity, which does
not significantly differ from the maximum velocity in the flow field. Hence, in the
case of non-dimensional equations, β = 1 is used in the presented steady numerical
simulations.

Equation (7) is discretized in space by the finite volume method (see [5]) and the
arising system of ODEs is integrated in time by the explicit multistage Runge-Kutta
scheme (see [4], [9]):

W n
i = W

(0)
i

W
(s)
i = W

(0)
i − αs−1∆tR(W )

(s−1)
i (12)

W n+1
i = W

(M)
i s = 1, . . . ,M,

where M = 3, α0 = α1 = 0.5, α2 = 1.0, the steady residual R(W )i is defined by
finite volume method as

R(W )i =
1

µi

4
∑

k=1

[(

F
c

k −
1

Re
F

v

k

)

∆yk −
(

G
c

k −
1

Re
G

v

k

)

∆xk

]

, (13)

where µi is the volume of the finite volume cell, µi =
∫ ∫

Ci
dx dy. The symbols F

c

k, G
c

k

and F
v

k, G
v

k denote the numerical approximation of the inviscid and viscous physical
fluxes. The symbols ∆xk and ∆yk respectively are lengths of the kth-edge of the
cell Ci in the x and y direction resp. The symbol Re is Reynolds number defined
by (11). The mesh in the considered domain is assumed structured, the finite volume
cells are quadrilateral.

The multistage Runge–Kutta scheme (12) is conditionally stable. The time step
is chosen to satisfy the CFL conditions

∆t ≤ min
i,k

CFL µi

ρA∆yk + ρB∆xk +
2

Reµ(γ̇)
(

(∆xk)2+(∆yk)2

µi

) (14)

index k describes the index of edges corresponding to the finite volume cell Ci. The
volume of this cell is µi. The symbol CFL is so called Courant-Friedrichs-Lewy
number. The Re is Reynolds number defined by (11) and µ(γ̇) is defined by (6).
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The global behaviour of the solution during the computational process is followed
by the L2 norm of the steady residuum. It is given by

‖Res(W )n‖L2 =

√

√

√

√

∑

i

(

W n+1
i −W n

i

∆t

)2

(15)

where Res(W )n stands for a vector formed by the collection of Res(W )ni , ∀i. The
decadic logarithm of ‖Res(W )n‖L2 is plotted in graphs presenting convergence his-
tory of simulation.

3.1.1. Steady boundary conditions

The flow is modelled in a bounded computational domain where a boundary is
divided into three mutually disjoint parts: a solid wall, an outlet and an inlet. At
the inlet Dirichlet boundary condition for velocity vector is used and for a pressure
Neumann boundary condition is used. At the outlet the pressure value is given
and for the velocity vector Neumann boundary condition is used. The homogenous
Dirichlet boundary condition for the velocity vector is used on the wall. For the
pressure Neumann boundary condition is considered.

Remark

The problem is to numerically solve Navier–Stokes equations for incompress-
ible flows. Mathematical theory is possible to use for flow in one type of channel
(steady) for one or more outputs where existence and unicity of the solution is proved
(see [10], [11]).

3.2. Unsteady computation

Two approaches are used for numerical solution of unsteady flows. First, the
artificial compressibility method is applied. In this case the artificial compressibility
parameter β is set to be a big positive number, ideally β → ∞. β = 10 is used in
presented unsteady numerical simulations. In the second aproach dual-time stepping
method is used.

The artificial compressibility approach used for unsteady incompressible flows is
modifying the system of equations by adding an unsteady term to the continuity
equation in the same way as for steady case.

The principle of dual-time stepping method is following. The artificial time τ is
introduced and the artificial compressibility method in the artificial time is applied.
The system of Navier-Stokes equations is extended to unsteady flows by adding
artificial time derivatives ∂W/∂τ to all equations, for more details see [8], [6]

R̃βWτ + R̃Wt + F c
x +Gc

y = F v
x +Gv

y, (16)

R̃ = diag(0, 1, 1), R̃β = diag(
1

β2
, 1, 1). (17)
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The vector of the variablesW , the inviscid fluxes F c, Gc and the viscous fluxes F v, Gv

are given by (9).
The derivatives with respect to the real time t are discretized using a three-point

backward formula, it defines the form of unsteady residual

R̃β

W l+1 −W l

∆τ
= −R̃

3W l+1 − 4W n +W n−1

2∆t
− Res(W )l = −Res(W )l+1, (18)

where ∆t = tn+1− tn and Res(W ) is the steady residual defined as for steady compu-
tation, see (13). The symbol Res(W ) denotes unsteady residual. The superscript n
denotes the real time index and the index l is associated with the pseudo-time. The
integration in pseudo-time can be carried out by explicit multistage Runge–Kutta
scheme. The dual-time step ∆τ is estimated using (14). The dual-time step is limited
so that ∆τ ≤ 2∆t/3.

The solution procedure is based on the assumption that the numerical solution
at real time tn is known. Setting W l

i = W n
i , ∀i, the iteration in l using explicit

Runge-Kutta method are performed until the condition

‖Res(W )l‖L2 =

√

√

√

√

∑

i

(

W l+1
i −W l

i

∆τ

)2

≤ ǫ (19)

is satisfied for a chosen small positive number ǫ. The symbol Res(W )l stands for the
vector formed by the collection of Res(W )li, ∀i. Once the condition (19) is satisfied
for a particular l, one sets W n+1

i = W l+1
i , ∀i. Then the index representing real-time

level can be shifted one up. History of the convergence of unsteady residual in dual
time from tn to tn+1 is plotted in decadic logarithm.

3.2.1. Unsteady boundary condition

The unsteady boundary conditions are defined as follows. In the inlet, in the solid
wall and in one of the outlet part the steady boundary conditions are prescribed. In
the second outlet part new boundary condition is defined. For the velocity Neumann
boundary condition is used. The pressure value is prescribed by the function

p21 =
1

4

(

1 +
1

2
sin(ωt)

)

, (20)

where ω is the angular velocity defined as ω = 2πf , where f is a frequency.

4. Numerical results

4.1. Steady numerical results

In this section the steady numerical results of two dimensional incompressible
laminar viscous flows for generalized Newtonian fluids are presented. The different
values of the power-law index were used. Reynolds number is 400.

In Figure 1 and 2 velocity isolines and histories of the convergence are presented.
One of the main differences between Newtonian and non-Newtonian fluids flow is in
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(c) shear-thinning - r = −0.5

Figure 1: Velocity isolines of steady flows for generalized Newtonian fluids.
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Figure 2: History of the convergence of steady flows for generalized Newtonian fluids.

the size of the separation region. This is in the place where the channel is branched.
From Figures 1, the separation region is the smallest for shear thickening fluids and
the biggest separation region is for the shear thinning fluids.

In Figure 3 nondimensional axial velocity profile for steady fully developed flow
of generalized Newtonian. In these figures the small channel is sketched. The line
(inside the domain) marks the position where the cuts for the velocity profile were
done.

4.2. Unsteady numerical results

In this section two dimensional unsteady numerical results for generalized Newto-
nian flow through the branching channel are presented. The used unsteady methods
are the artificial compressibility method and the dual-time stepping method with
artificial compressibility coefficient β = 10. In the branch (going up) the pressure
is prescribed by pressure function (20) with two frequencies f , 2 and 20. In Figure
4 and 5 numerical results for artificial compressibility method are presented. In the
Figure 4 frequency is 2 and in the Figure 5 frequency is 20. First pictures show
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Figure 3: Nondimensional velocity profile for steady fully developed flow of general-
ized Newtonian fluids in the branching channel.
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Figure 4: The graphs of the velocity as the function of time and velocity isolines of
unsteady flow of generalized Newtonian fluids by artificial compressibility method
(frequency is 2).

graphs of velocity. The square symbols mark positions in time of the snapshots
shown in next three pictures during one period.

As initial data the numerical solution of steady fully developed flow of generalized
Newtonian fluid in the branching channel was used. Reynolds number is 400.

Next used method is the dual-time stepping method. As in previous method
three types of fluids were considered: Newtonian, shear thickening and shear thining
non-Newtonian. Unsteady boundary conditions were used. In the branch (going up)
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Figure 5: The graphs of the velocity as the function of time and velocity isolines of
unsteady flow of generalized Newtonian fluids by artificial compressibility method
(frequency is 20).

the pressure is prescribed by pressure function (20) with considered frequencies f , 2
and 20. In Figure 6 and 7 graphs of velocity as the function of time and the velocity
distribution are shown.

As initial data the numerical solution of steady fully developed flow of generalized
Newtonian fluid was used. In the Figure 6 the frequency is 2 and in the Figure 7 the
frequency is 20.

5. Conclusions

In this paper a finite volume solver for incompressible laminar viscous flows in the
branching channel was described. Newtonian model was generalized for generalizing
Newtonian fluids flow. Power-law model with different values of power-law index were
tested. The explicit Runge-Kutta method was considered for numerical modelling.
The convergence history confirms robustness of the applied method. The numerical
results obtained by this method were presented and compared.

Two unsteady approaches were considered, the artificial compressibility method
and the dual-time stepping method. Both methods were tested for generalized New-
tonian fluids with initial data obtained by steady numerical computation.
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Figure 6: The graphs of the velocity as the function of the time.
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Figure 7: The graphs of the velocity as the function of the time.
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