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Abstract


In this paper we consider a parabolic inverse problem in which two unknown
functions are involved in the boundary conditions, and attempt to recover these func-
tions by measuring the values of the flux on the boundary. Explicit solutions for the
temperature and the radiation terms are derived, and some stability and asymptotic
results are discussed. Finally, by using the newly proposed numerical procedure some
computational results are presented.


1. Introduction


It is well known that the heat temperature is a function of radiative heat flux.
In certain heat transfer it is of interest to devise methods to evaluate temperature
functions by using only measurable radiation taken outside the medium.


This paper seeks to determine some unknown temperature functions which de-
pend only on the heat flux in a heat transfer equation.


The problem of determining unknown parameters in parabolic differential equa-
tions has been treated previously by many authors [1, 2, 3, 4, 9, 12, 14, 15, 16, 18].
Usually these problems involve the determination of a single unknown parameter
from additional boundary data. In some applications, however, it is desirable to be
able to determine more than one parameter from the given boundary data [5].


Hence, we may consider the following problem:


ut = uxx, 0 < x < 1, 0 < t < T, (1)


u(x, 0) = f(x), 0 < x < 1, (2)


u(0, t) = G(ux(0, t)) + g0(t), 0 < t < T, (3)


u(1, t) = H(ux(1, t)) + h0(t), 0 < t < T, (4)
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with the additional conditions:


ux(0, t) = g1(t), 0 < t < T, (5)


ux(1, t) = h1(t), 0 < t < T, (6)


where T is a given constant, f(x), g0(t), h0(t), g1(t), and h1(t) are given functions.
The equation (1) may be used to describe the flow of heat in a rod. Hence, we might
think of this problem as the problem of determining the unknown temperature terms
of rod. In this context, g0(t) and h0(t) are known functions which depend on the
temperature at the positions x = 0 and x = 1.


If the functions G and H are given, there may be no solution for the
problem (1)–(6). On the other hand, when G and H are known, under certain
conditions there may exist a unique solution for the problem (1)–(4), and this solution
may not satisfy the additional conditions (5) and (6). In this case, we say that the
pair of functions (u, (G,H)) provides a solution to the inverse problem (1)–(6). It
is well known that the inverse problem (1)–(6) has a unique solution and also some
more applications have been discussed in [10, 7, 8, 6].


The outline of this paper is as follows: In 2, some representation results are
established. In 3 and 4, some monotonic, stability and asymptotic behavior results
of solutions are discussed. In 5, by using the theta function, we consider a priori
estimates of solutions. A numerical scheme is described in 6. In the final section
we compare the solutions of the problem (1)–(6) obtained by theta function and by
other numerical methods, respectively.


2. Representation formula


To solve the inverse problem (1)–(6), let us consider the following auxiliary prob-
lem:


ut = uxx, 0 < x < 1, 0 < t < T, (7)


u(x, 0) = f(x), 0 ≤ x ≤ 1, (8)


ux(0, t) = g1(t), t ≥ 0, (9)


ux(1, t) = h1(t), t ≥ 0. (10)


For any piecewise-continuous functions f, g1, and h1, this problem has a unique
solution [2] as follows:


u(x, t) =


∫ 1


0


{θ(x− ξ, t) + θ(x+ ξ, t)}f(ξ)dξ


− 2


∫ t


0


θ(x, t− τ)g1(τ)dτ + 2


∫ t


0


θ(x− 1, t− τ)h1(τ)dτ, (11)


where


θ(x, t) =
∞
∑


m=−∞


K(x+ 2m, t),
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and


K(x, t) =
1√
4πt


exp


(


−x2


4t


)


, t > 0.


(3) and (5) yield


G(g1(t)) = u(0, t)− g0(t). (12)


From θ(−ξ, t) = θ(ξ, t), (11) and (12) we know that


G(g1(t)) = 2


∫ 1


0


θ(ξ, t)f(ξ)dξ


− 2


∫ t


0


θ(0, t− τ)g1(τ)dτ + 2


∫ t


0


θ(−1, t− τ)h1(τ)dτ − g0(t).


If we assume that the function s = g1(t) is invertible, then we find


G(s) = 2


∫ 1


0


θ(ξ, g−1
1 (s))f(ξ)dξ


− 2


∫ g−1


1
(s)


0


θ(0, g−1
1 (s)− τ)g1(τ)dτ


+ 2


∫ g−1


1
(s)


0


θ(−1, g−1
1 (s)− τ)h1(τ)dτ − g0(g


−1
1 (s)). (13)


Similarly, for H we have


H(ν) = 2


∫ 1


0


θ(ξ + 1, h−1
1 (ν))f(ξ)dξ


− 2


∫ h−1


1
(ν)


0


θ(1, h−1
1 (ν)− τ)g1(τ)dτ


+ 2


∫ h−1


1
(ν)


0


θ(0, h−1
1 (ν)− τ)h1(τ)dτ − h0(h


−1
1 (ν)), (14)


where the invertible function ν = h1(t) may be obtained from θ(1− ξ, t) = θ(1+ ξ, t)
and conditions (4) and (6).


3. Some monotonic results


In this section, we consider some monotonic results. First, by demonstrating the
following statement, we discuss the strict monotony of solutions.


Theorem 3.1. If g0 and g1 = h1 are strictly decreasing and continuous functions
and f = 0, then G is a strictly decreasing function.
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Proof. By differentiating (11) with respect to t, we obtain


ut(x, t) =wt(x, t)− 2


{


θ(x, 0)g1(t) +


∫ t


0


∂2θ


∂x2
(x, t− τ)g1(τ)dτ


}


+ 2


{


θ(x− 1, 0)h1(t) +


∫ t


0


∂2θ


∂x2
(x− 1, t− τ)h1(τ)dτ


}


,


where


w(x, t) =


∫ 1


0


{θ(x− ξ, t) + θ(x+ ξ, t)}f(ξ)dξ.


It follows from the properties of θ(x, t) function


lim
τ↑t


θ(x, t− τ) = 0, 0 < x < 1,


ut(0, t) = − 2


∫ t


0


∂2θ


∂x2
(0, t− τ)g1(τ)dτ


+ 2


∫ t


0


∂2θ


∂x2
(−1, t− τ)h1(τ)dτ,


∂2θ


∂x2
=


∂θ


∂t
= −∂θ


∂τ
,


and integration by parts that


ut(0, t) = − 2θ(0, t)g1(0)− 2


∫ t


0


θ(0, t− τ)g′1(τ)dτ


+ 2θ(−1, t)h1(1) + 2


∫ t


0


θ(−1, t− τ)h′
1(τ)dτ.


From g1(0) = h1(0) = 0, 2θ(0, t) > 1 and 0 < 2θ(−1, t) < 1, we conclude that


−β(g1(t)− g1(0)) + (h1(t)− h1(0)) = g1(t)(1− β) > 0, (15)


where
β = sup


0≤t≤T


{2θ(0, t)} > 1,


and h1 = g1 is a strictly decreasing function. From (15), we obtain ut(0, t) > 0. Now
from (12) and s = g1(t), we find


G′(s) =


(


∂u(0, t)


∂t
− ∂g0(t)


∂t


)


1


g′1(t)
< 0.


This demonstrates that G is a strictly decreasing function.


When h0 and g1 = h1 are strictly decreasing and continuous functions and f = 0,
we can obtain a similar result for H .
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4. Stability and asymptotic results


In this section, we consider the stability of the solutions G and H , and have the
following statement.


Theorem 4.1. Let (ui, (Gi, Hi)) (i = 1, 2) be two solutions of the problem (1)–(6)
corresponding to the two given data f = 0, g11(0)=g12(0)=0 and h11(0)=h12(0)=0.
Then, these solutions are stable.


Proof. From (11) we have


u(x, t) = −2


∫ t


0


θ(0, t− τ)g1(τ)dτ + 2


∫ t


0


θ(−1, t− τ)h1(τ)dτ.


Hence, by (12) we find


G1 −G2 = − (g01(t)− g02(t))


− 2


(
∫ t


0


θ(0, t− τ)g11(τ)dτ −
∫ t


0


θ(−1, t− τ)g12(τ)dτ


)


+ 2


(
∫ t


0


θ(−1, t− τ)h11(τ)dτ −
∫ t


0


θ(−1, t− τ)h12(τ)dτ


)


= − (g01(t)− g02(t))


− 2


∫ t


0


θ(0, t− τ){g11(τ)− g12(τ)}dτ


+ 2


∫ t


0


θ(−1, t− τ){h11(τ)− h12(τ)}dτ,


where


|G1 −G2| ≤ |g01 − g02|+
∣


∣


∣


∣


∫ t


0


2θ(0, t− τ)(g11 − g12)dτ


∣


∣


∣


∣


+


∣


∣


∣


∣


∫ t


0


2θ(−1, t− τ)(h11 − h12)dτ


∣


∣


∣


∣


, (16)


and from 2θ(0, t) > 1 we obtain


∣


∣


∣


∣


∫ t


0


2θ(0, t− τ)(g11 − g12)dτ


∣


∣


∣


∣


≤ sup
0≤t≤T


{2θ(0, t)}
∫ t


0


|g11 − g12|dτ


≤ 2βT |g11 − g12|, (17)


since integration by parts yields
∣


∣


∣


∣


∫ t


0


(g11(τ)− g12(τ))dτ


∣


∣


∣


∣


≤ t|g11(t)− g12(t)|+
∣


∣


∣


∣


∫ t


0


τ(g′11(τ)− g′12(τ))dτ


∣


∣


∣


∣


≤ 2T |g11(t)− g12(t)|,
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where


β = 2 sup
0≤t≤T


θ(0, t).


In this manner, we can also prove


∣


∣


∣


∣


∫ t


0


2θ(−1, t− τ)(h11 − h12)dτ


∣


∣


∣


∣


≤ 2T |h11 − h12|. (18)


Hence, from (17), (18), and (16) we obtain


|G1 −G2| ≤ |g01 − g02|+ 2βT |g11 − g12|+ 2T |h11 − h12|.


Similar results may be obtained for the solution H . Now, the stability of u can
be easily proved by using the equation (1) and conditions (2), (5), and (6). This
completes the proof of the theorem.


In the remainder of this section, by giving the following statement, we prove an
asymptotic boundary behavior result of the solution to the problem (1)–(6), which
agrees with the physical experiments of radiative heat transfer.


Theorem 4.2. If f = g1 = h1 = 0, G, and H are either increasing or decreasing
functions for any given functions g′0(t) < 0 and h′


0(t) < 0 or g′0(t) > 0 and h′
0(t) > 0,


respectively, then we have


G = −g0(t), H = −h0(t).


Proof. From (13) and (14) we obtain


dG


dt
= −g′0(t),


dH


dt
= −h′


0(t).


Now if g′0(t) > 0 and h′
0(t) > 0, then dG


dt
< 0 and dH


dt
< 0, i.e., G and H are decreasing


functions. Similarly, G and H are increasing functions in the case that g′0(t) < 0 and
h′
0(t) < 0.


The final part of the above statement can be easily proved by using (13) and (14),
and thus we conclude that


G = −g0(t), H = −h0(t).


The above result agrees with the law of radiation of a solid, like Newton’s law of
cooling and the Stefan’s law of radiation.


6







5. A priori estimates of solutions


In this section, we consider a priori estimates of the solutions G and H using the
a-prior estimate of θ(x, t). From [2] we obtain


θ(0, t) =
1√
4πt


(


1 + 2
∞
∑


m=1


exp(
−m2


t
)


)


,


and


exp


(−m2


t


)


<
t


m2
.


Therefore, we have


θ(0, t) <
1√
πt


(


1 +
π2


3
t


)


. (19)


It follows from


θ(−1, t) =
1√
4πt


(


1 + 2


∞
∑


m=1


exp(−(2m− 1)2


4t
)


)


,


and


exp(−x) <
1


x


that


θ(−1, t) <
1√
4πt


(


1 +
π2


2
t


)


. (20)


Hence, from (19), (20), and (13) we know


G̃(s) = − 200


∫ s


100


0


1
√


π( s
100


− τ)


(


1 +
π2


3
(
s


100
− τ)


)


τdτ


+ 10


∫ s


100


0


1
√


π( s
100


− τ)


(


1 +
π2


2
(
s


100
− τ)


)


τdτ. (21)


Now, by computing (21) we obtain


G̃(s) =
s


3


2 (1000 + π2 s)


75000
√
π


− s
3


2 (1500 + π2 s)


11250
√
π


,


where G̃(s) is an a priori estimate for G(s).
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6. The finite difference scheme


The domain [0, 1] × [0, T ] is divided into an M × N mesh with the spatial step
size h = 1/M in the x direction and the time step size τ = T/N , respectively.


Grid points (xi, tn) are defined by


xi = ih, i = 0, 1, 2, · · · ,M,


tn = nτ, n = 0, 1, 2, · · · , N,


in which M and N are integers. The notation un
i stands for the finite difference


approximation to u(ih, nτ).
We consider the use of a weighted average of the centered–difference approxima-


tion to uxx at time levels n and n+ 1 in the equation (1) approximated at the point
(ih, (n+ r)τ), 0 ≤ r ≤ 1, namely,


ut|(n+r)
i = uxx|(n+r)


i .


The space derivative can be written as a weighted average of the values of time
levels n and n + 1. Writing the space derivatives in centered–difference form then
yields:


uxx ≈ r
un+1
i+1 + un+1


i−1 − 2un+1
i


h2
+ (1− r)


un
i+1 + un


i−1 − 2un
i


h2
.


Therefore, we obtain


un+1
i − un


i


τ
= r


un+1
i+1 + un+1


i−1 − 2un+1
i


h2
+ (1− r)


un
i+1 + un


i−1 − 2un
i


h2
. (22)


The unknown values of u at the (n + 1)th time level may be expressed in terms
of the known values of u at the nth time level by writing (22) in the following form:


−rsun+1
i−1 +(1+2rs)un+1


i −rsun+1
i+1 = s(1−r)un


i−1+[1−2s(1−r)]un
i +s(1−r)un


i+1, (23)


for i = 1, · · · ,M − 1, where s = τ/h2.
The resulting system of equations may be used to obtain approximate solutions


for the one-dimensional heat equation with two unknown boundary conditions if it
is stable in the process of stepping in time and if the resulting system of equations
can be solved at each time level.


The application of the von Neumann stability analysis leads to the time weighted
scheme based on formula (23) [13], which is conditionally stable and requires


0 < s ≤ 1


2(1− 2r)
if 0 ≤ r <


1


2
,


s > 0 if
1


2
≤ r ≤ 1.
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The modified equivalent partial differential equation of this method is in the
following form [1, 17]:


∂u


∂t
− ∂2u


∂x2
− h2


12
[1− 6s(1− 2r)]


∂4u


∂x4
− h4


360
[1− 30s(1− 2r) + 120s2(1− 3r + 3r2)]


∂6u


∂x6
+O(h6) = 0.


Thus, the finite difference formula (23) is consistent with the one-dimensional
heat equation with a truncation error which is generally O(h2).


Therefore, when


r =
1


2
− 1


12s
,


the term of O(h2) disappears and the formula (23) is fourth-order accurate.


Setting r = 1/2 in the weighted formula (23) yields


−sun+1
i−1 + 2(1 + s)un+1


i − sun+1
i+1 = sun


i−1 + 2(1− s)un
i + sun


i+1,


for i = 1, · · · ,M − 1.


This formula is known as the Crank-Nicolson method, which is unconditionally
von Neumann stable for all s > 0. Alternatively, time stepping stability criteria for
the Crank-Nicolson method can be found by using the matrix technique [11].


7. Numerical results


In this section, we compare the solutions (13) and (14) of the problem (1)–(6)
with respect to theta function with some experimental results.


Example 7.1. We consider (1)–(6), and apply the Crank–Nicolson method. For this
purpose, we choose f = g0 = h0 = 0, g1(t) = 100t, h1(t) = 5t, δt = 0.0025, and
δx = 0.05. For the calculation of θ(x, t), we use the first 51 terms of its series.


Then (13) can be written as follows:


G(s) =
−2s


3


2


15
√
π
+


5


π


(


−
(


4
√
π − 3Γ(−3


2
, 0, 25


s
)
)


24


− s
(


2
√
π + Γ(t− 1


2
, 0, 25


s
)
)


200


)
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+
5


π


(


50
∑


m=1


{


− (
√
π| − 1 + 2m|)


6


+
2m


√
π | − 1 + 2m|


3
− 2m2


√
π | − 1 + 2m|


3


+
20m2 |m|


(


4
√
π − 3 Γ(−3


2
, 0, 100m2


s
)
)


3


+


| − 1 + 2m|Γ
(


−3
2
, 0,


−25 (−1+4m−4m2)
s


)
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−
m | − 1 + 2m|Γ


(


−3
2
, 0,


−25 (−1+4m−4m2)
s


)


2


+


m2 | − 1 + 2m|Γ
(


−3
2
, 0,


−25 (−1+4m−4m2)
s


)


2


+
s |m|


(


2
√
π + Γ


(


−1
2
, 0, 100m


2


s


))


5


+


s


(


− (
√
π| − 1 + 2m|)− |−1+2m|


2
Γ


(


−1
2
, 0,


−25(−1+4m−4m2)
s


))


100


})


.


The result for G is plotted in Figure 1. After four hundred time steps, we observe
that in Figure 1(b) both the numerical method and the θ–function method are of the
second order accuracy.


Example 7.2. In the problem (1)–(6), let


f(x) = x4,


g1(t) = 0,


h1(t) = 2 + 24t,


and
g0(t) = h0(t) = 0.


It is easy to check that the exact solutions u(x, t), G(ux(0, t)) and H(ux(1, t)) are as
follows:


u(x, t) = 12tx2 + x4 + 12t2,


and
G(ux(0, t)) = 12t2,


H(ux(1, t)) = 1 + 12t+ 12t2.
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Figure 1: The Crank–Nicolson scheme and the θ function scheme for G(s).
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Figure 2: The Crank–Nicolson scheme for determining G(s).


We plot G(ux(0, t)) from 0 to 1 in Figure 2(a) and the error distribution of
G(ux(0, t)) in Figure 2(b). We also do this for H(ux(1, t)) in Figure 3. It can be
observed that the numerical and the analytical results overlap each other. This is the
best we can expect from the scheme and the formulas we use.
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Figure 3: The Crank–Nicolson scheme for determining H(s).
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Abstract


We combine the theory of radial basis functions with the finite difference method
to solve the inverse heat problem, and use five standard radial basis functions in the
method of the collocation. In addition, using the newly proposed numerical procedure,
we also discuss some experimental numerical results.


1. Introduction


In the present work, we study the inverse problem of finding p(t) and u(x, t),
which satisfy


ut = uxx + p(t)ux + f(x, t), in QT ,


u(x, 0) = u0(x), 0 ≤ x ≤ 1,


ux(0, t) = g1(t), 0 ≤ t ≤ T,


ux(1, t) = g2(t), 0 ≤ t ≤ T,


(1)


along with an extra condition


u(x∗, t) = h(t), 0 ≤ t ≤ T, (2)


where x∗ = 0 or 1, QT = {(x, t), 0 < x < 1, 0 < t < T}, T > 0, and u0, g1 > 0,
g2 < 0, are known functions.


Recently, considerable efforts have been made in dealing with inverse problems
in partial differential equations. These inverse problems not only have the intrinsic
mathematical interests, but also have a variety of applications in industry and engi-
neering sciences (cf. [15, 17, 4, 14, 25, 22, 21, 10, 24, 23, 7, 6, 31, 9, 2, 3, 30, 1, 28, 20]
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for examples). They arise, for example, in the study of heat conduction processes,
thermoelasticity, chemical diffusion, and control theory [10, 8, 13, 11, 5, 16].


The existence and the uniqueness of the above inverse problem have been inves-
tigated in [12, 8, 13]. Also some other numerical and theoretical discussions about
this problem can be found in [26] and [27]. From (1) and (2) we have


h′(t) = uxx(0, t) + p(t)ux(0, t) + f(0, t),


and it follows that


p(t) =
h′(t)− uxx(0, t)− f(0, t)


g1(t)
,


and thus the inverse problem (1)–(2) is equivalent to the following non–local parabolic
problem


ut = uxx +
h′(t)− uxx(0, t)− f(0, t)


g1(t)
ux + f(x, t), in QT ,


u(x, 0) = u0(x), 0 ≤ x ≤ 1,


ux(0, t) = g1(t), 0 ≤ t ≤ T,


ux(1, t) = g2(t), 0 ≤ t ≤ T,


(3)


where h′(t) > 0, uxx(0, t) < 0, u0(x) > 0, g1(t) > 0, and g2(t) < 0.


2. Radial basis functions


The numerical solution of partial differential equations by Radial Basis Functions
(RBFs) methods is based on a scattered data interpolation. Let x1, · · · , xN ∈ Ω ⊂ Rd


be a given set of scattered data. A radial basis function φi(x) = φ(‖x−xi‖2) depends
only on the distance between x ∈ Rd and a fixed point xi ∈ Rd, such that the radial
basis function φi is radially symmetric about the center xi. Some well–known RBFs
are listed in Table 1.


Name of Radial Basis Function Definition


Multiquadric (MQ) φ(r) =
√
c2 + r2


Inverse Quadratic (IQ) φ(r) = 1
c2+r2


Inverse Multiquadric (IMQ) φ(r) = 1√
c2+r2


Gaussian (GA) φ(r) = exp(−cr2)
Thin Plate Splines φ(r) = r2 log(r)


Table 1: Some well–known functions that generate RBFs.
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Let r be the Euclidean distance between a fixed point xi ∈ Rd and an arbitrary
point x ∈ Rd, i.e. r = ‖x−xi‖2. A radial function interpolation problem may be de-
scribed as follows: For given data fi = f(xi) (i = 1, · · · , N) and x = (x1, x2, · · · , xd),
the interpolation RBF approximation is


Sf (x) =
N∑
i=1


αiφi(x) + Ψ(x), (4)


where αi are chosen such that Sf (xi) = fi, and the above equation can be written
without the additional polynomial Ψ. In that case, φ must be unconditionally pos-
itive definite to guarantee the solvability of the resulting system (e.g., Gaussian or
inverse multiquadrics, Sobolev splines or compactly supported functions). However,
Ψ is usually required when φ is conditionally positive definite, i.e., when φ has a poly-
nomial growth towards infinity. Examples are thin plate splines and multiquadrics.


If Pdq denotes the space of d–variate polynomials of order not exceeding q, and
letting the polynomials P1, · · · , Pm be the basis of Pdq in Rd, then the polynomial Ψ
is usually written in the following form:


Ψ(x) =
m∑
i=1


ζiPi(x), (5)


where m = (q − 1 + d)!/(d!(q − 1)!).
To determine the coefficients (α1, · · · , αN) and (ζ1, · · · , ζm), the collocation


method is used. However, in addition to the N equations resulting from collocating
equation (4) at the N points, an extra m equations are required. This is insured by
the m conditions for (4),


N∑
j=1


αjPi(xj) = 0, i = 1, · · · ,m. (6)


In a similar representation as (4), for any linear partial differential operator L, Lu
can be approximated by


Lu(x) '
N∑
i=1


αiLφ(x, xi) + LΨ(x).


3. Implementation of the meshless method


In this section, we combine the theory of radial basis functions with the finite
difference method to solve the non–local parabolic problem (3).


Since our problem depends on time, the idea of the proposed numerical scheme
is to interpolate the unknown function u by the following RBFs φj (j = 1, 2, . . . , N):


u(x, t) '
N∑
j=1


αj(t)φj(x), (7)
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where αj(t) are the unknown coefficients depending on time. Since each radial basis
function does not depend on time, the time derivative of u is simply given in terms
of the time derivatives of the coefficients:


∂u(x, t)


∂t
'


N∑
j=1


dαj(t)


dt
φj(x),


and the first and second partial derivatives of u with respect to x are respectively
given as follows:


∂u(x, t)


∂x
'


N∑
j=1


αj(t)
dφj(x)


dx
,


∂2u(x, t)


∂x2
'


N∑
j=1


αj(t)
d2φj(x)


dx2
.


First, let us discretize (3) according to the following θ–method


u(x, t+ δt)− u(x, t)


δt
=θ


[
∇2u(x, t+ δt) +


h′(t+ δt)


g1(t+ δt)
∇u(x, t+ δt)


− 1


g1(t+ δt)
∇2u(0, t+ δt)∇u(x, t+ δt)


− 1


g1(t+ δt)
f(0, t+ δt)∇u(x, t+ δt) + f(x, t+ δt)


]
+ (1− θ)


[
∇2u(x, t) +


h′(t)


g1(t)
∇u(x, t)


− 1


g1(t)
∇2u(0, t)∇u(x, t)


− 1


g1(t)
f(0, t)∇u(x, t) + f(x, t)


]
,


(8)


where u(x, t) is the temperature at the position x and at time t, ∇ the gradient dif-
ferential operator, 0 ≤ θ ≤ 1, and δt is the time step size. Rearranging equation (8),
using the notation u(x, tn) = un where tn = tn−1 + δt, we obtain


un+1 − un


δt
=θ


[
∇2un+1 +


hn+1


gn+1
1


∇un+1 − 1


gn+1
1


∇2un+1
0 ∇un+1


− 1


gn+1
1


fn+1
0 ∇un+1 + fn+1


]
+ (1− θ)


[
∇2un +


hn


gn1
∇un − 1


gn1
∇2un0∇un −


1


gn1
fn0∇un + fn


]
,


(9)


where gn1 = g1(t
n), hn = h′(tn), fn = f(x, tn), fn0 = f(0, tn), and un0 = u(0, tn). The


nonlinear term in the above equation is linearized by using the following term [29]:


(∇u · ∇2u)n+1 = (∇u)n+1(∇2u)n + (∇u)n(∇2u)n+1 − (∇u)n(∇2u)n.
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Rearranging equation (9), we have


un+1 − ξ
[
∇2un+1 + hn+1γn+1∇un+1 − γn+1∇2un+1


0 ∇un


− γn+1∇2un0∇un+1 − γn+1fn+1
0 ∇un+1


]
= un − β


[
∇2un + hnγn∇un − γn∇2un0∇un − γnfn0∇un


]
+ ξγn+1∇2un0∇un + ξfn+1 − βfn,


(10)


where ξ = θδt, β = −(1− θ)δt, and γn = 1
gn1


.


Assuming that there are (N − 2) interpolation points, then u(x, tn) can be
approximated by


un(x) '
N−2∑
j=1


αnj φj(x) + αnN−1x+ αnN , (11)


where αj(t
n) = αnj . To determine the interpolation coefficients (α1, · · · , αN), we


employ the collocation method by applying (11) at every point xi (i = 1, · · · , N−2).
Thus, we have


un(xi) '
N−2∑
j=1


αnj φj(xi) + αnN−1xi + αnN . (12)


The additional conditions due to (6) are written as:


N−2∑
j=1


αnj =
N−2∑
j=1


αnj xj = 0. (13)


Writing (12) together with (13) in a matrix form, we have


[u]n = A[α]n, (14)


where [u]n = [un1 · · · unN−2 0 0]T , [α]n = [αn1 · · ·αnN ]T , and A = [aij, 1 ≤ i, j ≤ N ] is
given by


A =



φ1,1 · · · φ1,N−2 x1 1


...
. . .


...
...


...
φN−2,1 · · · φN−2,N−2 xN−2 1
x1 · · · xN−2 0 0
1 · · · 1 0 0


 .


There are p = (N−4) internal (domain) points and two boundary points. There-
fore, the (N ×N) matrix A can be split into


A = Ad + Ab1 + Ab2 + Ae,
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where


Ad = [aij for (2 ≤ i ≤ N − 3, 1 ≤ j ≤ N) and 0 elsewhere],


Ab1 = [aij for (i = 1, 1 ≤ j ≤ N) and 0 elsewhere],


Ab2 = [aij for (i = N − 2, 1 ≤ j ≤ N) and 0 elsewhere],


Ae = [aij for (N − 1 ≤ i ≤ N, 1 ≤ j ≤ N) and 0 elsewhere].


Using the notation LA to designate the matrix of the same dimension as A and
containing the elements ãij = Laij, 1 ≤ i, j ≤ N , then (10) together with boundary
conditions can be written, in the matrix form, as follows:


[Cξ +B +D + Ae][α]n+1 =[Cβ][α]n + (a+ c)(∇H[α]n) · (∇2G[α]n)


+ b(∇H[α]n) + ξfn+1 − βfn + F n+1,
(15)


where a = βγn, b = βγnfn0 , c = ξγn+1,


H = ∇Ab1 +∇Ab2 +∇Ad, B = ∇Ab1 +∇Ab2, Cξ = Ad− ξ∇2Ad− ξhn+1γn+1∇H


D = c[∇H[α]n∇2G+∇2G[α]n∇H + fn+1
0 ∇H], Cβ = Ad − β∇2Ad − βhnγn∇H,


and


G = [φ
′′


1(0) · · · φ′′


N−2(0) 0 0], F n = [(g1)
n
1 0 · · · 0 (g2)


n
N−2 0 0]T .


Assuming M = [Cξ + B + D + Ae], in general the well–posedness of (15) and the
solvability of such a system are open, and see the paper of Fasshauer [18] for details.
However, recently Franke and Schaback [19] gave the first the convergence proof and
the error bound for the solution of the partial differential equation with collocation
and radial basis functions. They have showed that the radial basis functions have
to be much smoother than the smoothness required for a weak solution of the dif-
ferential operator. As far as the Laplace operator and the thin plate splines or the
multiquadrics are concerned, the requirements are met to guarantee the positive def-
initeness of the resulting matrix and therefore insure the solvability of the system,
and see Reference [19] for details.


It follows from rewriting (15) in the following form


[α]n+1 =M−1[Cβ][α]n + (a+ c)M−1(∇H[α]n) · (∇2G[α]n)


+ bM−1(∇H[α]n) +M−1(ξfn+1 − βfn + F n+1),
(16)


and making use of (14) that the vector temperature [u]n+1 is computed from [u]n by
using


[u]n+1 =AM−1[Cβ]A−1[u]n + (a+ c)M−1(∇HA−1[u]n) · (∇2GA−1[u]n)


+ bM−1(∇HA−1[u]n) +M−1(ξfn+1 − βfn + F n+1),
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where [u]0 = A[α]0, and [α]0 can be computed by the initial condition. Finally, the
approximate value of p(t) is given by


p(tn) =
h′(tn)− uxx(0, tn)− f(0, tn)


g1(tn)
,


where


uxx(0, t
n) =


N∑
j=1


αnj
d2φj(0)


dx2
.


4. Numerical experiments


To show the efficiency of the new method on the inverse parabolic partial dif-
ferential equation, three examples are given. These tests are chosen such that their
analytical solutions are known. However, the method developed in this paper can
be applied to more complicated problems. Since the equation (16) is valid for any
value of 0 ≤ θ ≤ 1, we will use θ = 0 (thus the scheme is explicit, and the stability
limitation is ∆t ≤ 1


2
(∆x)2), θ = 1


2
(the scheme is the famous Crank–Nicholson), and


θ = 1 (the scheme is implicit).
We use the L2 and the L∞ error norms to measure the difference between the


numerical and analytical solutions. Let ũ denote the approximated solution. The
L2 error norm is defined by


L2 = ‖u− ũ‖2 =


√√√√ 1


N


N∑
j=1


|uj − ũj|2,


and the L∞ error norm is defined by


L∞ = ‖u− ũ‖∞ = max
1≤j≤N


|uj − ũj|.


Example 4.1. We wish to solve the inverse problem (1)–(2) with the following con-


ditions:


u0(x) = (0.5− x)x,


g1(t) = 0.5,


g2(t) = −1.5,


h(t) = 2 sin(t)− 2t,


f(x, t) = 2 cos(t)(0.5 + 2x),


x∗ = 0, and T = 1, for which the exact solution is


u(x, t) = −(x− 0.5)x+ 2 sin(t)− 2t,


p(t) = 2 cos(t).
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t L∞–error (u) L2–error (u)


0 1× 10−10 1× 10−18


0.1 4× 10−6 3× 10−6


0.2 7× 10−5 7× 10−5


0.4 4× 10−5 4× 10−5


0.6 1× 10−4 1× 10−4


0.8 6× 10−5 3× 10−5


1 1× 10−4 1× 10−4


Table 2: The L∞ and the L2 errors for u with c = 0.0005, dt = 0.001, dx = 0.2 for


Example 4.1 and using the GA–RBF and the Crank–Nicholson scheme.


t L∞–error (p)


0 1× 10−7


0.1 1× 10−6


0.2 2× 10−6


0.4 1× 10−5


0.6 4× 10−5


0.8 9× 10−5


1 1× 10−4


Table 3: The errors between the analytical solution and the estimated solution p,


with c = 0.0005, dt = 0.001, dx = 0.2, for Example 4.1, and using the GA–RBF and


the Crank–Nicholson scheme.


The L∞ and the L2 errors are displayed for u in Table 2 for t = 0, 0.1, 0.2, 0.4,
0.6, 0.8 and 1, by using the GA–RBF and the Crank–Nicholson scheme. Also, the
corresponding errors between the analytical and the estimated function p are listed
in Table 3. The graph of the analytical and the estimated functions for u in t = 1
is given in Figure 1(b). In addition, the maximum error variations of the algorithm
with different radial basis functions are depicted in Figure 1 and Figure 2.


Example 4.2. In this example, we consider the inverse problem (1)–(2) with the


following conditions:


u0(x) = 2 + (0.5− x)x,


g1(t) = 0.5,


g2(t) = −1.5,


h(t) = 2t4 − 2t,


f(x, t) = 8t3(0.5 + 2x),
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(a) Numerical solution of u(x, t)


0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.9


-0.8


-0.7


-0.6


-0.5


-0.4


-0.3


-0.2


(b) The analytical and the numerical solutions


of u(x, 1).


Figure 1: The GA–RBF and the Crank–Nicholson scheme with c = 0.0005, dt =


0.001, dx = 0.2.


t L∞–error (u) L2–error (u)


0 8× 10−10 21× 10−21


0.1 26× 10−6 21× 10−6


0.2 29× 10−5 26× 10−5


0.4 24× 10−4 22× 10−4


0.6 82× 10−4 76× 10−4


0.8 18× 10−3 16× 10−3


1 25× 10−3 20× 10−3


Table 4: the L∞ and the L2 errors for u, with c = 0.0005, dt = 0.001, dx = 0.2, by


using the MQ–RBF and the explicit scheme.


x∗ = 0, and T = 1, for which the exact solution is


u(x, t) = −(x− 0.5)x+ 2t4 − 2t,


p(t) = 4t3.


The L∞ and the L2 errors are obtained for u in Table 4 for t = 0, 0.1, 0.2, 0.4, 0.6,
0.8 and 1, by using the MQ–RBF and the explicit scheme. Also, the corresponding
errors between the analytical and the estimated functions p are listed in Table 5.
The graph of the analytical and the estimated functions for u in t = 0.4 is given in
Figure 3(b). Moreover, the maximum error variations of the algorithm with different
radial basis functions are presented in Figure 3 and Figure 4.
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(b) The absolute errors for u by using the MQ–


RBF


0 0.2 0.4 0.6 0.8 1
0


0.5


1


1.5


2


2.5


3


3.5
x 10


-3


Inverse Multiquadric(IMQ)


(c) The absolute errors for u by using the IMQ–


RBF
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Figure 2: The absolute errors for u(x, t) with T = 1, c = 0.0005, dt = 0.001, dx = 0.2


and the Crank–Nicholson scheme.


Example 4.3. We consider the inverse problem (1)–(2) with the following condi-


tions:


u0(x) = (0.5− x)x,


g1(t) = 0.5,


g2(t) = −1.5,


h(t) = 2t2 − 2t,


f(x, t) = 4t(0.5 + 2x),


x∗ = 0,
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t L∞–error (p)


0 1× 10−6


0.1 2× 10−5


0.2 4× 10−5


0.4 8× 10−5


0.6 1× 10−4


0.8 2× 10−4


1 1× 10−3


Table 5: The errors between the analytical solution and the estimated solution p,


with c = 0.0005, dt = 0.001, dx = 0.2, by using the MQ–RBF and the explicit


scheme.


(a) The numerical solution of u(x, t)
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(b) The analytical and the numerical solu-


tions of u(x, 0.4).


Figure 3: The MQ–RBF and the explicit scheme with c = 0.0005, dt = 0.001,


dx = 0.2.


and T = 1, for which the exact solution is


u(x, t) = −(x− 0.5)x+ 2t2 − 2t,


p(t) = 4t.


The L∞ and the L2 errors are obtained for u in Table 6 for t = 0, 0.1, 0.2, 0.4, 0.6,
0.8 and 1, by using the IMQ–RBF and the implicit scheme. Also, the corresponding
errors of the analytical and the estimated functions p are listed in Table 7. The graph
of the analytical and the estimated functions for u in t = 0.1 is given in Figure 5(b).
In addition, the maximum error variations of the algorithm with different radial basis
functions are given in Figure 5 and Figure 6.
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(c) The absolute errors for u by using the IMQ–
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Figure 4: The absolute errors for u(x, t) with T = 1, c = 0.0005, dt = 0.001, dx = 0.2


and the Crank–Nicholson scheme.


5. Conclusions


Radial basis functions are used to solve an inverse parabolic equation. The mesh-
less property of the RBFs method is the most important advantage of this scheme
over the traditional mesh dependent techniques such as finite difference methods, fi-
nite element methods, and boundary element methods. The mesh free nature of the
new technique allows us to solve the problems with non–regular geometry. A com-
parison with some well known finite difference methods for numerical solution of the
inverse parabolic problem shows that the present method is more accurate. In con-
clusion we mention that the RBFs technique can be extended to similar two and three
dimensional inverse parabolic problems subject to temperature overspecification.
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t L∞–error (u) L2–error (u)


0 1× 10−10 57× 10−23


0.1 38× 10−5 37× 10−5


0.2 39× 10−4 39× 10−4


0.4 78× 10−4 74× 10−4


0.6 11× 10−4 9× 10−4


0.8 12× 10−3 78× 10−4


1 4× 10−3 25× 10−3


Table 6: The L∞ and the L2 errors for u, with c = 0.0005, dt = 0.001, dx = 0.2, by


using the IMQ–RBF and the implicit scheme.


t L∞–error (p)


0 3× 10−6


0.1 4× 10−5


0.2 9× 10−5


0.4 1× 10−4


0.6 2× 10−4


0.8 4× 10−4


1 4× 10−3


Table 7: The errors between the analytical solution and the estimated solution p,


with c = 0.0005, dt = 0.001, dx = 0.2, by using the IMQ–RBF and the implicit


scheme.


(a) The numerical solution of u(x, t)
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(b) The analytical and the numerical solu-


tions of u(x, 0.1).


Figure 5: The IMQ–RBF and the implicit scheme with c = 0.0005, dt = 0.001,


dx = 0.2.
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(c) The absolute errors for u by using the IMQ–
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Figure 6: The absolute errors for u(x, t) with T = 1, c = 0.0005, dt = 0.001, dx = 0.2


and the Crank–Nicholson scheme.
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for some semilinear parabolic equations. Inverse Problems 4 (1988), 595–606.


[8] Cannon, J. R. and Lin, Y.: An inverse problem of finding a parameter in a semi-
linear heat equation. J. Math. Anal. Appl. 145 (1990), 470–484.


[9] Cannon, J. R., Lin, Y., and van der Hoek, J.: Semi-linear heat equation sub-
ject to the specification of energy. In: Modeling and analysis of diffusive and
advective processes in geosciences, pp. 40–51. SIAM, Philadelphia, PA, 1992.


[10] Cannon, J. R., Lin, Y., and Xu, S.: Numerical procedures for the determination
of an unknown coefficient in semi-linear parabolic differential equations. Inverse
Problems 10 (1994), 227–243.


[11] Cannon, J. R. and Yin, H. M.: A class of nonlinear nonclassical parabolic equa-
tions. J. Differential Equations 79 (1989), 266–288.
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Abstract


Cottle’s proof that the minimal number of 0/1-simplices needed to triangulate the
unit 4-cube equals 16 uses a modest amount of computer generated results. In this
paper we remove the need for computer aid, using some lemmas that may be useful
also in a broader context. One of the 0/1-simplices involved, the so-called antipodal
simplex, has acute dihedral angles. We continue with the study of such acute binary
simplices and point out their possible relation to the Hadamard determinant problem.


1. On a personal note


Until 1997, I lived in the two-dimensional world created by Edwin A. Abbott in
1884: Flatland. This is meant, of course, metaphorically, or maybe better mathe-
matically. My mathematical output, mostly in the context of superconvergence in
finite element methods, dealt with partial differential equations formulated on a two-
dimensional domain Ω. When people asked me if I could generalize my theorems to
three space dimensions, I shrugged and gave an answer along the lines of: ”I suppose
so. What’s different in three than in two dimensions?”


A square from Flatland is introduced to the third dimension in Flatland the Movie.
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My PhD supervisors did not push the matter, but things became differently when
I arrived at the Mathematical Institute of the Academy of Sciences in Prague on
October 1, 1997.


1.1. From two via three to arbitrary dimension


Michal Kř́ıžek, who had encouraged me to apply for the position that I was going
to hold for a year, investigated not only superconvergence in finite element methods,
but also discrete maximum principles. Both topics include certain demands to be
placed on the triangulation of the domain Ω. Also the convergence of the method
involves conditions on the triangulation. From his publications [1, 2, 3] around that
time, it is clear that Michal Kř́ıžek was not afraid to look beyond dimension two. At
that moment, if I remember it well, he was already involved with research together
with Sergey Korotov and Pekka Neittaanmäki that led to the two papers [4, 5] in the
influential journals Mathematics of Computation and SIAM Journal on Numerical
Analysis. And, as most of the readers of these proceedings dedicated to Michal’s
60th birthday will have experienced themselves as well, Michal’s enthusiasm for the
geometrical aspects of finite element methods is difficult to ignore. More positively
formulated, it is contagious. Thus, not unlike the Flatland character of Spherius,
the three-dimensional visitor of Flatland, who teaches the ignorant Flatlanders about
higher dimensions, Michal started to motivate me to do mathematics in three dimen-
sions.


Spherius reveils himself by intersecting with Flatland.


At first, this went slow. We studied superconvergence of quadratic tetrahedral finite
element methods already quite soon, but proved it only in [6]. In the mean time,
I, the pupil, had even surprised the master, Michal, by suggesting to prove supercon-
vergence for linear finite elements in dimensions higher than three, resulting in the
dimension independent superconvergence proof in [7]. This paper seemed to have
started, at least for me, a new chapter in my mathematical life. From that point
onwards, I always tried to think dimension independently, and was, of course, en-
thusiastically encouraged by Michal in doing so. This led even to geometric results
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that were a bit further away from the numerical analysis background of finite ele-
ment meshes. For instance, a right triangle can trivially be subdivided into two right
triangles, and with a bit of effort, a path-tetrahedron, which is a tetrahedron having
a path of three mutually orthogonal edges, can be subdivided into three of such path-
tetrahedra. This was already known, but we managed to prove the corresponding
result for path-simplices of arbitrary dimension in [8]. Even though remotely related
to local nonobtuse refinement of higher dimensional finite element meshes, the trend
was now that we did geometry for the sake of geometry. The last developments in
this direction are that we study nonobtuse and acute binary simplices, which are
simplices whose vertices are vertices of the unit n-cube. With these simplices one
can try to triangulate the n-cube, which led to the result [9] that, using nonobtuse
binary simplices, this can be done in only two ways, modulo the action of the cube
symmetries, the elements of the hyperoctahedral group.


Binary simplices in the three-cube.


This paper, in fact, started another chapter in my research. From this point onwards,
I got my own students who work with me, and with Michal on the background in
Prague, on topics like this. Starting January 2012, even a first PhD student will work
on the abstract geometrical questions that all originated from Michal’s enthusiasm,
dating back to the final years of the previous millennium. I am looking forward to
the coming four years of this PhD project.


1.2. Other dimensions and facets


Apart from mathematical influence, Michal Kř́ıžek has had a big impact on my
career and personal development. He was involved in many of the invitations that
I got to speak at conferences, to visit institutions, and even in the jobs that I got.
We traveled together to many places, among which Berkeley and Beijing, and he was
the only visitor that I got during the position that I held at the University of New
South Wales in Sydney. As a result, Michal Kř́ıžek is a member of the select group
of people that I have met on four different continents. The group is so select that it
has no other members (as far as I know).


For completeness of this account, I will also mention a less positive experience
that I had with Michal. During our visit to MSRI in Berkeley, we decided to travel
to the Arizona Impact Crater and to the Grand Canyon, by car. Well, Michal
decided to travel there, much against the wishes of conference organizer Ivo Babuška
who rather had us prove theorems also during that weekend. I went along, while
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not making myself more useful than to read the map – I have no driver’s license.
All went well, until the Sunday morning. We had slept in the car on a parking
somewhere in the Arizona desert. You may be aware of the fact that temperatures
can be quite low during desert nights, so we hardly slept due to the clattering of our
teeth. At sunrise, a bit past four, we decided to move on again, completely frozen,
very sleepy, hungry, not feeling well at all. I do not know how long it took, but it felt
like a long time before, finally, a gasoline station with restaurant was announced,
and I was counting the miles. When finally I told Michal to take the exit to the
gasoline station, his answer was one of surprise: ”Go here? Why? Our tank is still
three quarters full. We do not need gasoline for hours and hours!”. While the exit
appeared out of sight behind us, and after I had recovered my speech after a moment
of being completely stupefied, all I could do was shout two words, and to repeat them
to make a statement: ”Gasoline?? Gasoline?? Coffee!! Coffee!!”.
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With this, I think I have mentioned Michal’s single greatest flaw: he does not drink
coffee. I’m sure that Paul Erdös would agree. In spite of that, he is a great person
and a true friend.


2. Minimal cube triangulation with binary simplices


As mentioned in the previous section, one topic of recent interest was the trian-
gulation of the unit cube using binary simplices, which are simplices whose vertices
are vertices of the unit cube. Although the three- and four-dimensional cases have
been well-understood already for a few decades, I would like to add some minor
observations. In all that follows, we only consider triangulations with binary sim-
plices, also called 0/1-simplices, as special cases of 0/1-polytopes.


2.1. Triangulating the unit three-cube


One of the first questions that we asked ourselves when confronted with the
question what is the minimal number of 0/1-simplices needed to triangulate the unit
n-cube In was the following: of course, we knew that the answer for n = 3 is five,
but how does one actually prove such a statement?


The classical proof by Mara [10] is based on the inequality Pn ≥ 2Pn−1, where
Pj denotes the minimal number of 0/1-simplices that is needed to triangulate Ij. This
inequality is derived from the fact that In has 2n facets, which each show at least
Pn−1 0/1-simplices of dimension n−1. Since each binary n-simplex in a triangulation
of In has at most n facets that lie on the boundary ∂In of In, this immediately gives
the statement. Together with the simple fact that P2 = 2 this gives that P3 ≥ 4.
Mara [10] continues with the rather complicated argument that the interior facet
of a 0/1-simplex having n exterior facets can not be met by another 0/1-simplex
having n exterior facets. Apply this to the case n = 3. Then ∂I3 shows 12 triangular
facets. If these are the exterior facets of four 0/1-tetrahedra, their four interior facets
cannot meet one another, and a fifth 0/1-tetrahedron is necessary to complete the
triangulation.


We can now adapt the argument by Mara as follows. It will result in a stronger
version of the inequality Pn ≥ 2Pn−1 that will also be sufficient to prove minimality
of a triangulation of I4 in 16 binary simplices.


Theorem 2.1. For n ≥ 2 we have that


Pn ≥ 2Pn−1 +
(n− 2)(n− 1)!


Hn


,


where Hn is the maximum absolute value of the determinant of a 0/1-matrix of
size n× n.


Proof. Let In be triangulated into binary n-simplices. This induces triangulations
of each of the facets of In. The crucial observation is that the (n − 1)-simplicial
facets that are visible in two opposite facets of In must be facets of distinct binary
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n-simplices in In. Indeed, a binary n-simplex in In with n ≥ 2 cannot have two facets
in opposite facets of In, or it would have 2n vertices. This proves Mara’s inequality
Pn ≥ 2Pn−1. However, the total Euclidean volume of all the 0/1-simplices that are
visible in the two opposite cube facets equals only 2/n. This can be seen using the
formula that the volume of a binary n-simplex equals 1/n times the volume of a facet,
times the height of the vertex opposite this facet. The sum of the (n− 1)-volumes
of the exterior facets equals two (the added volume of the two triangulated facets
of the n-cube) and their heights are all equal to one. The remaining volume of
1 − 2/n = (n − 2)/n needs to be filled by other 0/1-simplices. The volume |S| of
a 0/1-simplex S in In that has the origin as one of its vertices equals


|S| =
∣∣∣∣det(P )


n!


∣∣∣∣
where the 0/1-matrix P has the remaining n vertices of S as columns. Dividing
(n− 2)/n by the largest possible value of this volume results in the statement. �


Corollary 2.2. P3 ≥ 5.


Proof. One easily verifies that the largest determinant of a 0/1-matrix of size 3×3
equals two. One can also use the Hadamard bound, valid for 0/1-matrices of size n×n,


Hn ≤ 2


(√
n+ 1


2


)n+1


. (1)


In both cases we find, using Theorem 2.1 above, that P3 ≥ 2P2 + 1 = 5. �
The 1893 Hadamard maximal determinant conjecture is contained in the question


what is the value of Hn in terms of n. This is still an open problem.


Jaques Hadamard (1865–1963)


See Sloan’s Online Dictionary of Integer Sequences, item A003432, for the rather
small number of known values for Hn, the first of which are given below.


n 2 3 4 5 6 7 8 9 10 11 12 13
Hn 1 2 3 5 9 32 56 144 320 1458 3645 9477


We will get back to this problem further on.
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For now, note that of course, the lower bound of five 0/1-tetrahedra is attained
by the triangulation of I3 consisting of an interior regular 0/1-tetrahedron with edge
length


√
2 and four 0/1-tetrahedra having each three exterior facets, so-called cube


corners. The regular 0/1-tetrahedron is depicted in the most left picture in the figure
in Section 1.1, a typical cube corner is displayed directly on its right.


2.2. Triangulating the unit four-cube with binary 4-simplices


Theorem 2.1 provides an immediate lower bound for the number P4 of binary
4-simplices that are needed to triangulate the unit four-cube, I4.


Corollary 2.3. P4 ≥ 14.


Proof. The Hadamard bound (1) shows that H4 ≤ 3. Moreover, there exist
binary 4-simplices whose matrix representation P indeed have determinant 3 (see
also Section 3). Thus, by Theorem 2.1,


P4 ≥ 2P3 +
2 · 6


3
= 2 · 5 + 4 = 14.


Note that even though the Hadamard bound is not an integer, Hn always is. �


Now, this lower bound is not sharp, and the reason for this is that all 0/1-simplices
in I4 of maximum volume 3/24 intersect one another. Hence, at most one of them
can be used in a triangulation. In the following we will prove this. Note that the
original result is by Cottle [11] but he used computer generated information. The
proofs below do not.


First we define the antipodal 0/1-simplices. An example is the convex hull of the
standard unit basis vectors and the all-ones vector. As such, it shares an interior
facet (spanned by the standard unit basis vectors) with a cube corner, and this also
explains its name. Of course, there are 2n distinct cube corners in In, and thus
as many 0/1-antipodal simplices. It is easy to see that the midpoint of the cube
is interior to each antipodal 0/1-simplex, and thus, that a triangulation of In into
0/1-simplices contains at most one of them. In the case n = 4, to prove that all
0/1-simplices of maximum volume 3/24 intersect, it is therefore sufficient to prove
that all 0/1-simplices of volume 3/24 are antipodal 0/1-simplices.


Lemma 2.4. Let S be a binary n-simplex with an edge of length one. Then there
exists a binary n-simplex Ŝ with an exterior facet such that |S| = |Ŝ|.


Proof. Without loss of generality, assume that the edge of length one of S sprouts
from the origin. Then the matrix P whose columns are the vertices of S other
than the origin has a column equal to a standard basis vector. As a result, the
0/1-simplex Ŝ represented by the origin and the columns of P t has an exterior facet
because P t has a row with only one nonzero entry. Obviously det(P ) = det(P t) and
thus the volumes of S and Ŝ coincide. �
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Definition 2.5. Write e for the all-ones vector in Rn. Given a vertex x of In, the
point e− x is called the antipodal vertex of x.


Lemma 2.6. Let S be a binary n-simplex with two antipodal vertices. Then there
exists a binary n-simplex Ŝ with an exterior facet such that |S| = |Ŝ|.


Proof. Without loss of generality, we assume that the antipodal vertices of S
are the origin and the all-ones vector e. Then the matrix P whose columns are
the vertices of S other than the origin has a column equal to e. As a result, the
0/1-simplex Ŝ represented by the origin and the columns of P t has an exterior facet
because P t has a row with no zero entries. Obviously det(P ) = det(P t) and thus
the volumes of S and Ŝ coincide.


The purpose of the above two lemmas is to conclude the following.


Corollary 2.7. A binary 4-simplex S with maximal volume has no exterior facet
and does not contain two vertices x and y that are antipodals, or joined by a cube
egde.


Proof. The volume of any binary 0/1-simplex with an exterior facet is at most
1/4 times the volume of that facet (which is at most 1/3), and thus at most 2/24.
Thus, S has no exterior facet, and hence by the above lemmas the rest of the state-
ment follows as well. �


Lemma 2.8. Each binary 4-simplex S of volume 3/24 is an antipodal 0/1-simplex.


Proof. By Corollary 2.7., S has no exterior facet. Thus, no cube facet of I4


contains 4 vertices of S. Hence, we may suppose without loss of generality that the
facet C0 of I4 with x4 = 0 contains the vertices p1, p2 and p3 of S, and that the
facet C1 of I4 parallel to C0 contains the remaining vertices p4 and p5. Since by
Corollary 2.7. no cube edge is an edge of S, the vertices of S in C0 are the regular
triangular facet of a three-dimensional cube corner. Again without loss of generality
we choose the origin such that p1 = e1, p2 = e2 and p3 = e3. The remaining two
vertices of S lie in the facet C1 parallel to C0. Again by Corollary 2.7., they are
not connected by a cube edge to p1, p2, p3, nor are they antipodal to them. This
disqualifies six of the eight vertices of C1. Thus, only one choice for the pair p4, p5
remains. One easily verifies that one of them is e4, and that the other is the all-ones
vertex e. In particular, this shows that S is an antipodal 0/1-simplex. �


Theorem 2.9. Each triangulation T of I4 into 0/1-simplices contains at least 16 bi-
nary simplices.


Proof. Using Theorem 2.1, we need at least ten 0/1-simplices of total volume
1/2 plus some additional 0/1-simplices that are needed to fill the remaining volume
of 1/2. These additional 0/1-simplices can only have volumes 1/24, 2/24 or 3/24 due
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to the Hadamard bound (1). Due to Lemma 2.8., together with the fact that each
antipodal 0/1-simplex contains the midpoint of I4 in its interior, there is at most
one 0/1-simplex S of volume 3/24 in a triangulation T of I4. If there is none, then
at least six 0/1-simplices of volume 2/24 are needed to complete the triangulation.
If there is one, then at least five more 0/1-simplices are needed to complete T . In
both cases, the total number |T | of 0/1-simplices in T is at least 16. �


A triangulation of I4 into 16 binary simplices exists and was given already by
Mara [10].


3. Acute simplices


In dimensions 2, 3, and 4, the antipodal 0/1-simplices are the ones with the
largest volume in In. The antipodal 0/1-simplex that is opposite the cube corner at
the all ones vector e has the origin as vertex together with e− e1, . . . , e− en, where
e1, . . . en are the standard unit basis vectors. Thus, the matrix having those vectors
as columns is


P = eet − I,
where I is the n × n identity matrix. Since the rank-one matrix eet obviously has
n− 1 eigenvalues equal to zero, and one equal to n due to eete = en, subtracting the
identity results in P having n − 1 eigenvalues equal to −1 and one equal to n − 1.
This shows that the antipodal 0/1-simplex has volume (n− 1)/n! in dimension n.


Moreover, each antipodal 0/1-simplex is an acute simplex, meaning that all its
dihedral angles are acute. Recall that a dihedral angle between two facets equals
π minus the angle between two exterior normals to those facets. For triangles, this
reduces to the usual angle. Even though it is intuitively clear that an antipodal
0/1-simplex is acute, it can also be prove rigorously by showing that the inverse of
the matrix P tP has negative upper triangular entries and positive row sums.


Proposition 3.1. ([8]) The simplex with as vertices the origin and the columns of
the matrix P is acute if and only if (P tP )−1 has all upper triangular entries negative
and all row sums positive.


Remark 3.2. Note that Q, where QtP = I, has normals to the facets of S as
columns, because the j-th column of Q is orthogonal to all columns of P but the j-th.
Thus, QtQ = (P tP )−1 contains dihedral angle information in its upper triangular
part, but not for the facet opposite the origin, whose corresponding normal equals −Qe,
where e is the all-ones vector. Thus, the remaining dihedral angle information is in
the row sums of (P tP )−1. For details, see [8].


Acute binary simplices are extremely rare compared to all binary simplices, in fact,
even relative to all nonobtuse binary simplices. The total numbers of acute binary
simplices in the n-cube, modulo the action of the hyperoctahedral group of cube
symmetries, are
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n 3 4 5 6 7 8 9 10 11
# 1 1 2 6 13 29 67 162 392


Note that in dimensions 3 and 4, the single acute binary simplex is, in fact, the
antipodal 0/1-simplex.


We computed the above numbers by a nontrivial computer program. Nontrivial,
because it is impossible to generate all binary simplices, to verify which are acute,
and then to put them into equivalence classes generated by the cube symmetries.
For this, the total amount of 0/1-simplices is simply too large. Thus, the trick is to
generate representatives of all equivalence classes of binary simplices directly. It is
beyond the scope of this paper to explain the method in detail.


Our computational results so far show, that for 3 ≤ n ≤ 13, apart from dimen-
sions 9, 10 and 13, the maximal determinant over all acute binary simplices is the
same as when taken over all binary simplices, as can be seen by comparing with the
table in Section 2.1. This leads to a conjecture, although based on little evidence.


n 2 3 4 5 6 7 8 9 10 11 12 13
det 1 2 3 5 9 32 56 96 224 1458 3645 7290


Conjecture: For dimensions n ≥ 3 and n = 0 (mod 4) and n = 3 (mod 4) there
exists a 0/1-matrix representing an acute binary simplex that has maximal determi-
nant.


Before trying to prove this conjecture, we would like to collect more computa-
tional data. This is not a trivial task, since the structure of acute binary simplices
is not yet understood. Some simple properties can, however, be easily proved.


Proposition 3.3. A nondegenerate acute binary simplex S has the following prop-
erties:


• S has no pair of antipodal points as vertices;


• S has no edge of the cube as edge;


• S has no external facet.


Proof. Without loss of generality, we give the proof for an acute binary simplex
having the origin as a vertex. Let x be a vertex of S other than e or the origin.
Then x, e−x and the origin form a right triangular facet of S because xt(e−x) = 0.
Indeed, x and e− x differ in all coordinates thus the sum of their products vanishes.
This contradicts the well known fact that acute simplices have acute facets. Next,
let x, y be vertices of S other than the origin with x−y = ek, a standard basis vector
of Rn. Then xtek = 1 and ytek = 0 but ek = x−y hence yt(x−y) = 0. Thus, y, x−y
and the origin form a right triangle, again contradicting that S is acute. Finally, if
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S has an external facet F , it is by definition a subset of a facet of In. The vertex v
of S opposite F is connected via an edge of In with a vertex of F , see also [9]. We
already proved above that this cannot happen in an acute binary simplex. �


While generating the acute binary simplices, we also investigated which values
their determinant can actually have, instead of only looking at their maximum value.
The set of determinant values of 0/1-matrices in general is known as the determinant
spectrum, and thus we investigate the subset that we will call the acute determinant
spectrum.


Below we present a global illustration of this acute binary determinant spectrum.
For values of n up to 11, we indicate by brightness how many distinct acute 0/1-
simplices have a certain determinant value. For instance, the slightly brighter line
between the vertical values 3 and 4 indicates the 3-antipodal. Slightly to its right
and between values 4 and 5 on the vertical axis, we see the 4-antipodal. In fact,
the antipodal 0/1-simplices are the left-most acute 0/1-simplices in the spectrum
for each value of n. There do not seem to exist acute 0/1-simplices with a smaller
volume.


On the other hand, the values of the determinant rapidly increase with the dimension,
as the Hadamard bound suggests. Moreover, and this is not really well visible in
the above diagram, we can distinguish several families, parametrized by n, whose
determinant is linear in n, similar as the determinant of the antipodal equals n− 1.


One of the tasks of my new PhD student will be to study these structures, from
2012 to 2016, and we hope that Michal Kř́ıžek is going to play a part in this project.
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nonobtuse binary triangulations of the unit n-cube, submitted, 1–20.


[10] Mara, P. S.: Triangulations for the Cube. Journal of Combinatorial Theory 20
(1976), 170–177.


[11] Cottle, R. W.: Minimal triangulation of the 4-Cube. Discrete Mathematics 40
(1982), 25–29.


42








Conference Applications of Mathematics 2012


in honor of the 60th birthday of Michal Kř́ı̌zek.


Institute of Mathematics AS CR, Prague 2012


ANALYTICAL SOLUTION OF STOKES FLOW NEAR CORNERS


AND APPLICATIONS TO NUMERICAL SOLUTION


OF NAVIER-STOKES EQUATIONS WITH HIGH PRECISION


Pavel Burda1, Jaroslav Novotný2, Jakub Š́ıstek3
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Abstract


We present analytical solution of the Stokes problem in 2D domains. This is then


used to find the asymptotic behavior of the solution in the vicinity of corners, also


for Navier-Stokes equations in 2D. We apply this to construct very precise numerical


finite element solution.


1. Introduction


The behaviour of the solution of Stokes and Navier-Stokes equations in domains
with boundary corners or with discontinuities in boundary conditions is still not
quite well understood. The singularities arising in these cases will be analyzed in
this paper. Let us note that the asymptotic behaviour applies also to Navier-Stokes
equations. In selected cases we use the analytical solution to characterize the singular
part of the solution. The results will be applied to two examples: the flow in a channel
with forward and backward steps, and the problem of lid driven cavity.


2. Analytical solution of the Stokes flow near corners


2.1. Problem formulation


We consider the Stokes problem for incompressible viscous fluid in two dimen-
sions, in vorticity – stream function formulation, cf. e.g. Feistauer [6],


∂2ψ


∂x2
+
∂2ψ


∂y2
= −ω , (1)
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∂ω


∂t
= ν


(∂2ω


∂x2
+
∂2ω


∂y2


)


, (2)


where ω(x, y) is the vorticity, ψ(x, y) is the stream function.
To analyze the flow in a domain with corners, we transform the problem to polar


coordinates


x = r cos ϑ , y = r sin ϑ . (3)


with the pole in the corner, as e.g. the points P or S on Fig. 1.


P S


Figure 1: The solution domain Ω.


In the paper we restrict ourselves to the steady flow. Thus the problem (1), (2)
in polar coordinates means to find functions ψ(r, ϑ), ω(r, ϑ), satisfying the equations


∂2ψ


∂r2
+


1


r


∂ψ


∂r
+


1


r2
∂2ψ


∂ϑ2
= −ω , (4)


ν
(∂2ω


∂r2
+


1


r


∂ω


∂r
+


1


r2
∂2ω


∂ϑ2


)


= 0 . (5)


Velocity components ur, uϑ are related to the stream function as follows


ur =
1


r


∂ψ


∂ϑ
, uϑ = −∂ψ


∂r
. (6)


In what follows we also need the equations of motion for Stokes problem in polar
coordinates, in velocity - pressure formulation, cf. e.g. Batchelor [1]


ν


(


∂2ur
∂r2


+
1


r


∂ur
∂r


+
1


r2
(
∂2ur
∂ϑ2


− 2
∂uϑ
∂ϑ


− ur)


)


− 1


ρ


∂p


∂r
= 0. (7)


ν


(


∂2uϑ
∂r2


+
1


r


∂uϑ
∂r


+
1


r2
(
∂2uϑ
∂ϑ2


+ 2
∂ur
∂ϑ


− uϑ)


)


− 1


ρ


1


r


∂p


∂ϑ
= 0. (8)


Note: without loss of generality, we assume in the paper that the viscosity ν = 1,
and also the density ρ = 1.


2.2. Analytical solution for singularities


We solve the equations (4), (5) by means of separation of variables, i.e. we seek
for the solution in the form


ψ(r, ϑ) = P (r) · F (ϑ) , (9)


ω(r, ϑ) = R(r) ·G(ϑ) . (10)
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Substituting this into (4), (5) we get


P ′′(r) · F (ϑ) + 1


r
P ′(r) · F (ϑ) + 1


r2
P (r) · F ′′(ϑ) = −R(r) ·G(ϑ), (11)


R′′(r) ·G(ϑ) + 1


r
R′(r) ·G(ϑ) + 1


r2
R(r) ·G′′(ϑ) = 0. (12)


Separating the terms with variables r and ϑ in (12) we get


r2R′′(r) + rR′(r)


R(r)
= −G


′′(ϑ)


G(ϑ)
= κ, (13)


where κ is a real constant independent of both r and ϑ. This gives two equations:


−κR(r) = 0 , separR (14)


G′′(ϑ) + κ G(ϑ) = 0. (15)


Let us assume κ > 0. Then the equation (??) has the general solution


R(r) = a r−
√
κ + b r


√
κ , (16)


where a, b are arbitrary real constants.


Assumption 1. As we are interested mainly in the asymptotic behaviour of the


solution in the vicinity of corners, in what follows we shall consider only the singular


part of the solution


R(r) = a rK . (17)


where


K = −
√
κ. (18)


Solving the equation(15) for G and using it together with (17) in (10), we get for
singular part of the vorticity ω


ω(r, ϑ) = rK
(


c1 · cos(Kϑ) + c2 · sin(Kϑ)
)


(+h.o.t), (19)


where c1, c2 are arbitrary real constants.
Now we substitute this to the equation (11) and get


P ′′(r)F (ϑ) +
1


r
P ′(r)F (ϑ) +


1


r2
P (r)F ′′(ϑ) = −rK(c1 cos(Kϑ) + c2 sin(Kϑ)) . (20)


From this equation we easily deduce


P (r) = rK+2. (21)


Using this in (20) we obtain the equation for the function F (ϑ):


F ′′(ϑ) + (K + 2)2F (ϑ) = −c1 cos(Kϑ)− c2 sin(Kϑ). (22)
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The general solution of equation (22) is


FGN(ϑ) = D1 cos(K + 2)ϑ+D2 sin(K + 2)ϑ− c1
4K + 4


cos(K)ϑ− c2
4K + 4


sin(K)ϑ,


(23)
where D1, D2, c1, c2 are arbitrary real constants. Finally according to (9) and (21)
we have for the stream function the asymptotic formula


ψ(r, ϑ) = rK+2 · FGN(ϑ) (+h.o.t.). (24)


This result (with still undetermined parameter K = −√
κ) will be later used for


derivation of the asymptotic behaviour of the solution in the vicinity of corners.


3. Singularity of the solution near nonconvex corners


We consider fluid flow in 2D region with boundary corner of internal angle ϕ, cf.
Fig. 1. We assume a rigid boundary and nonslip boundary conditions, so that the
boundary conditions for the stream function are


ψ(r, 0) = 0, ψ(r, ϕ) = 0, (25)


∂ψ


∂ϑ
(r, 0) = 0,


∂ψ


∂ϑ
(r, ϕ) = 0. (26)


The stream function ψ(r, ϑ), according to (23) and (24) is


ψ(r, ϑ) = rK+2{A1 cos(K + 2)ϑ+ A2 sin(K + 2)ϑ+ A3 cosKϑ+ A4 sinKϑ}, (27)


where
A1 = D1, A2 = D2, A3 = − c1


4K + 4
, A4 = − c2


4K + 4
. (28)


The stream function (27) is subject to boundary conditions (25), (26), so we
obtain the equations


A1 + A3 = 0 ,


A1 cos(K + 2)ϕ+ A2 sin(K + 2)ϕ+ A3 cos(Kϕ) + A4 sin(Kϕ) = 0 ,


A2(K + 2) + A4K = 0 ,


−A1(K + 2) sin(K + 2)ϕ+ A2(K + 2) cos(K + 2)ϕ−
−A3K sin(Kϕ) + A4K cos(Kϕ) = 0.


In order to determine the parameter K (and consequently κ) we have to ensure
the condition


Q(K) = 0,


where


Q(K)=det














1 0 1 0
cos(K+2)ϕ sin(K+2)ϕ cos(Kϕ) sin(Kϕ)


0 K+2 0 K
−(K+2) sin(K+2)ϕ (K+2) cos(K+2)ϕ −K sin(Kϕ) K cos(Kϕ)














.


(29)
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We easily get


Q(K) =− 2(K + 2)K + (K2 + (K + 2)2) sin(K + 2)ϕ sin(Kϕ)


+ 2K(K + 2) cos(K + 2)ϕ cos(Kϕ). (30)


This expression will be simplified by means of substitution


γ = K + 1. (31)


Then, after some manipulations we get


Q(γ) = −4(γ2 sin2 ϕ− sin2 γϕ). (32)


So the parameter γ has to satisfy the algebraic equation


γ2 sin2 ϕ− sin2 γϕ = 0. (33)


Example 1. As an example we take the domain shown in Fig. 1, where the angle


ϕ =
3


2
π. (34)


Then solving the equation (33) we get


γ = 0.5444837, (35)


so that
K = −


√
κ = γ − 1 = −0.45552, (36)


Now, following the expression (27) we get for the stream function the asymptotic
behaviour near the angle 3


2
π:


ψ(r, ϑ) = r1.54448 · F (ϑ), (37)


where the function F does not depend on r. Consequently for the velocity compo-
nents, by (6) we have the asymptotics


ur = rγ F1(ϑ) = r0.54448 F1(ϑ),


uϑ = rγ F2(ϑ) = r0.54448 F2(ϑ), (38)


where the functions F1(ϑ), F2(ϑ) are independent of r.
To derive the asymptotic behaviour for pressure we use the momentum equa-


tion (7), where we substitute for ur and uϑ from (38) and get


∂p


∂r
= rγ−2Φ(ϑ), (39)
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where the function Φ(ϑ) is independent of r. So finally


p ≈ rγ−1Φp(ϑ) ≈ r−0.45552Φp(ϑ), (40)


where the function Φp(ϑ) is independent of r.
Let us note that the same asymptotics were also found by a different technique in


Kondratiev [7], in Ladeveze and Peyret [8] for 2D channel flow, and also in B. [2] in
case of the cylindrically symmetric flow. We also note that the asymptotics (38), (40)
apply also to Navier-Stokes equations, see e.g. B. [2].


4. Singularity by discontinuous boundary condition


Let us consider 2D flow in lid driven cavity, see Fig. 2, with boundary conditions


ψ(r,
3


2
π) = 0, ψ(r, 2π) = 0, (41)


1


r


∂ψ


∂ϑ
(r,


3


2
π) = 0,


1


r


∂ψ


∂ϑ
(r, 2π) = 1, (42)


for left upper corner.


Figure 2: The lid driven cavity.


We solve the equations (1),(2) similarly as we did in Section 2, by means of
separation (9) and (10)


ψ(r, ϑ) = P (r) · F (ϑ),
ω(r, ϑ) = R(r) ·G(ϑ).


One can easily derive that it is sufficient to put


P (r) = r (43)


in order to satisfy the first condition in (42). This immediately implies that the
asymptotics of the stream function in upper corners of the cavity are


ψ(r, ϑ) = r · F (ϑ), (44)


where r is the distance from the relevant corner.
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Moreover from (11) and (43) it follows


1


r
F (ϑ) +


1


r
F ′′(ϑ) = −R(r) ·G(ϑ), (45)


and here suitable function R(r) is


R(r) =
1


r
. (46)


Then for vorticity we get, using (10)


ω(r, ϑ) =
1


r
·G(ϑ). (47)


Further from (46) and (13)
κ = 1 . (48)


Now by (15) we have the equation for G(ϑ):


G′′(ϑ) +G(ϑ) = 0, (49)


whose general solution is


G(ϑ) = c1 · cosϑ+ c2 · sin ϑ, (50)


where c1, c2 are arbitrary real constants. By (45) we get the equation for F (ϑ)


F ′′(ϑ) + F (ϑ) = −c1 · cosϑ− c2 · sinϑ . (51)


The general solution of (51) is


FGN (ϑ) = A1 cosϑ+ A2 sinϑ+
c2
2
ϑ cosϑ− c1


2
ϑ sinϑ. (52)


Then the stream function, using (44) may be written as


ψ(r, ϑ) = r{A1 cosϑ+ A2 sinϑ+ A3ϑ cos ϑ+ A4ϑ sinϑ}. (53)


The constants A1, . . . , A4 are then determined using the boundary con-
ditions (41), (42), and we get the analytical solution for stream function near the
corner of the cavity as


ψ(r, ϑ) = rF (ϑ), (54)


where


F (ϑ) =
1


π2


4
− 1


{


π2 cosϑ− 3


2
π sin ϑ− π


2
ϑ cosϑ+ ϑ sinϑ


}


. (55)


Now by (6) and (44) we get


ur = F ′(ϑ), uϑ = −F (ϑ), (56)
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We observe that the velocity components do not depend on the distance r from the
cavity corner. Now we put the velocity components (56) to the momentum equation
for Stokes problem in polar coordinates (7) and get the expression for pressure


∂p


∂r
=


(


1


r2
(F ′′′(ϑ) + F ′(ϑ))


)


ν


ρ
. (57)


For simplicity we assume ν
ρ
= 1. Then


p(r, ϑ) =
1


r
(−F ′′′(ϑ)− F ′(ϑ)) + C1(ϑ). (58)


Using (55) we get


p(r, ϑ) =
1


r


1
π2


4
− 1


(π sinϑ− 2 cosϑ) + C1(ϑ) , ϑ ∈
(


3


2
π, 2π


)


. (59)


So we obtained the asymptotic expression for pressure with respect to r coordi-
nate. Let us note that the asymptotic expression p(r, ϑ) = 1


r
Φ(ϑ) was found already


by Luchini [9]. We followed some of his ideas in this section.


5. Application to finite element solution of Navier-Stokes equations


In this section we deal with isothermal flow of Newtonian viscous fluids with con-
stant density. The flow is modelled by the Navier-Stokes system of partial differential
equations (nonconservative form). We deal only with steady flow:


(u · ∇)u− ν∆u+∇p = f in Ω, (60)


∇ · u = 0 in Ω, (61)


where


• u = (u1, u2)
T means the vector of flow velocity, in m/s, being a function of x ,


• p = pr
ρ
is the pressure divided by the density considered in Pa m2/kg,


• ν = µ
ρ
denotes the kinematic viscosity of the fluid considered in m2/s,


• f denotes the density of volume forces per mass unit considered in N/m2.


The system is supplied with the boundary conditions


u = g on Γ. (62)


Here g is a given function of x satisfying
∫


Γ
g · n dΓ = 0, where n denotes the unit


outer normal vector to the boundary Γ.
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5.1. Finite element solution: a priori error estimates


For the approximate solution of the Navier-Stokes equation we use the finite
element method with Taylor-Hood elements. In the paper we utilize the a priori
estimate of the finite element error for the Navier-Stokes equations (60)–(61) (cf. [5])


‖∇(u− uh)‖L2(Ω) ≤ C
[(


∑


K


h2kK | u |2
Hk+1(TK)


)1/2


+
(


∑


K


h2kK | p |2Hk(TK)


)1/2]


, (63)


‖p− ph‖L2(Ω) ≤ C
[(


∑


K


h2kK | u |2
Hk+1(TK)


)1/2


+
(


∑


K


h2kK | p |2Hk(TK)


)1/2]


, (64)


where u, p are in turn the precise velocity vector and precise pressure, and uh, ph
are in turn the approximate velocity vector and approximate pressure, hK is the
diameter of triangle TK of a triangulation T , and k = 2 for Taylor-Hood elements.


Remark: In [2] we have shown that the asymptotic behaviour of the solution near
corners derived for the Stokes flow applies also to Navier Stokes equations. We
also suggested an algorithm for generation of the finite element mesh near corners
that makes use of the information on the asymptotic behaviour of the solution of
Navier-Stokes equations.


5.2. Algorithm for generation of computational mesh


Now we combine the results of Subsection 5.1 and Section 4. By (58), the leading
term of expansion for pressure is


p(r, ϑ) = r−1Φ(ϑ) + . . . , (65)


where r is the distance from the corner, ϑ the angle and Φ is a smooth function.
Taking the expansion (65), we can estimate the seminorm of p:


| p |2Hk(TK)≈ C


rK
∫


rK−hK


ρ2(−k−1) ρ dρ = C
[


−r−2k
K + (rK − hK)


−2k
]


(66)


where rK is the distance of element TK from the corner.
Putting estimate (66) into the a priori estimate (63) or (64), we derive that we


should guarantee


h2kK


[


−r−2k
K + (rK − hK)


−2k
]


≈ h2kref (67)


in order to get the error estimate of order O(hkref) uniformly distributed on elements.
From this expression, we compute element diameters in accordance to chosen href .
For evaluating the achieved accuracy of the approximate solution, we use the


a posteriori error estimator, see e.g. [3].
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Figure 3: Lid driven cavity. Top: mesh 128×128 refined locally near upper corners.
Centre: pressure near left upper corner by adjusted finite elements, Re = 10,000.
Bottom: pressure near left upper corner analytically.
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5.3. Numerical results


We show on Fig. 3 some results for lid driven cavity. First is the locally refined
mesh near upper corners of the cavity, obtained by the algorithm described in Sec-
tion 5.2. This mesh is then used for very precise finite element solution: on central
part of Fig. 3 we show the pressure calculated from the Navier-Stokes equations
on this mesh. For comparison, we also give the graph of pressure obtained by the
analytical solution (59) of the Stokes flow.


Concerning applications to flow in 2D channel like that on Fig. 1, we refer to [4],
where there are also tables showing the high precision of solution on such meshes.


6. Conclusion


In the paper we are interested in Stokes and Navier-Stokes problem with singu-
larities caused either by nonconvex corners in 2D domains or by discontinuities in
boundary conditions. For the Stokes flow we find analytically the principal part of
the asymptotics of solution in the vicinity of corners. This result is used on one
hand to construct the finite element mesh adjusted to singularity. This mesh is then
used to find very precise solution of Navier-Stokes equations. On the other hand,
the analytical solution of the Stokes flow near corners of lid driven cavity, e.g., may
be used to test other methods.
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Abstract


Balancing Domain Decomposition by Constraints (BDDC) belongs to the class
of primal substructuring Domain Decomposition (DD) methods. DD methods are
iterative methods successfully used in engineering to parallelize solution of large linear
systems arising from discretization of second order elliptic problems.


Substructuring DD methods represent an important class of DD methods. Their
main idea is to divide the underlying domain into nonoverlapping subdomains and
solve many relatively small, local problems on subdomains instead of one large problem
on the whole domain. In primal methods, it has to be specified how to distribute
interface residuals among subdomains and how to obtain global, interface values of
solution from local values on adjacent subdomains. Usually a weighted average is used
with some simple choice of weights.


In our paper we present numerical comparison of three different choices of interface
weights on test problem of 2D Poisson equation, with and without jumps in coeffi-
cients.


1. Introduction


The BDDC method introduced in [1] is one of the most popular substructuring
DD methods. It belongs to the wide class of the primal Neumann-Neumann domain
decomposition methods. As it has been recently shown in [4], a primal preconditioner
of such type is determined by the choice of two operators: the injection R and the
averaging E. These two operators appear also in the estimate of the condition
number of the preconditioned operator (see (4) bellow).


The choice of the operator R can be formulated as the choice of continuity con-
ditions across the interface (coarse unknowns). It is well-known that the choice of
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the operator R has a strong influence on the quality of the preconditioning. A lot
of work has been invested into research of relations between the choice of coarse
unknowns and the quality of preconditioning, and significant results were obtained
(e.g. in [2, 4]).


The averaging operator E seems to be aside from the main effort of the investi-
gation so far. Standard choices of E found already in [1] are arithmetic average and
average weighted by diagonal entries of matrices of local problems. Another recom-
mended choice of weights is a ratio of corresponding diagonal entries of local and
global Schur complements. However, often these values are not available, because
Schur complements are not computed explicitly in the most efficient implementations
of substructuring methods.


A more general framework for derivation of the averaging operator was introduced
in [5]. The standard choice of using diagonal entries of Schur complements mentioned
above can be regarded as one special case of it. In [5], two new variants derived
from the general framework were preliminarily tested on a test problem with two
subdomains, which led to promising results. However, in the case of two subdomains
only, there is no difference between global and local interface, so these results cannot
be regarded as typical. In this paper we use a test problem with four subdomains
and one cross-point.


We start with brief introduction into primal substructuring methods and BDDC
(detailed description with many references can be found in [3]) and description of dif-
ferent methods for averaging. Then numerical comparison of three averaging methods
follows: one of the new variants tested in [5] and two standard choices – arithmetic
average and average weighted by diagonal entries of Schur complements.


2. Reduction of the problem to the interface


Let us consider a boundary value problem with a self-adjoint operator defined on
a domain Ω ⊂ R2 or R3. If we discretize the problem by means of the standard finite
element method (FEM), we arrive at the solution of a system of linear equations in
the matrix form


Ku = f , (1)


whereK is large, sparse, symmetric positive definite (SPD) matrix and f is the vector
of the right-hand side.


Let us decompose the domain Ω into N non-overlapping subdomains Ωi, i =
1, . . .N . Unknowns common to at least two subdomains form the global interface.
Remaining unknowns are classified as belonging to subdomain interiors. The global
interface can be expressed as union of local interfaces, containing interface unknowns
involved just in subdomain Ωi.


The first step used in many domain decomposition methods including BDDC is
the reduction of the problem to the interface. Without loss of generality, suppose
that unknowns are ordered so that interior unknowns form the first part and the


interface unknowns form the second part of the solution vector, i.e. u =
[
uo û


]T
,
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where uo stands for all interior unknowns and û for unknowns at interface. Now,
system (1) can be formally rewritten to block form


[
Koo Kor


Kro Krr


] [
uo


û


]
=


[
fo


f̂


]
. (2)


The hat symbol (̂) is used to denote global interface quantities. If we suppose the
interior unknowns are ordered subdomain after subdomain, then the submatrix Koo


is block diagonal with each diagonal block corresponding to one subdomain.
After eliminating all the interior unknowns from (2), we arrive at Schur comple-


ment problem for the interface unknowns


Ŝ û = ĝ, (3)


where Ŝ = Krr − KroK
−1
oo Kor is the Schur complement of (2) with respect to the


interface and ĝ = f̂ − KroK
−1
oo fo is sometimes called condensed right-hand side.


Interior unknowns uo are determined by interface unknowns û via the system of
equations Koouo = fo−Korû, which represents N independent subdomain problems
with Dirichlet boundary condition prescribed on the interface and can be solved in
parallel. The main objective represents the solution of problem (3), which is solved
by the preconditioned conjugate gradient method (PCG).


3. Primal DD methods and BDDC


Historically, primal DD methods were used so that in every iteration a residual r̂
of (3) was computed and split into subdomains, then local problems were solved
and then the global solution on the interface was computed as a weighted average of
the local solutions. This can be written as Richardson iterations ûi+1 = ûi +Mr̂i,
where M stands for operator M = ES−1ET , with ET representing splitting of the
residual to subdomains, S−1 representing solution of subdomain problems, and E
representing projection of subdomain solutions back to the global problem by some
averaging.


Presently, primal DD methods are mostly used as preconditioners for problem (3)
within the PCG method. In every iteration of the PCG method, a preconditioned
residual is computed using the DD preconditioner M , which is realized by one step
of the corresponding DD method. The condition number κ of the preconditioned
operator MŜ is bounded by


κ ≤ ||RE||2S , (4)


where operator R splits the global interface into subdomains and the energetic norm
on the right-hand side is defined by the scalar product as ||u||2S = 〈Su, u〉. The
relationship (4) was proved in [4] assuming that ER = I, which means that if the
problem is split into subdomains and then projected back to the whole domain, the
original problem is obtained.
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If we use independent subdomain problems only (no continuity conditions across
the interface), the operator S is expressed by a block diagonal matrix S with diagonal
blocks Si representing local Schur complements on subdomains. Relationship be-
tween global and local problems can be expressed in matrix form as


Ŝ = RTSR =
∑


i


RiTSiRi , u = Rû , û = Eu, (5)


where Ri represents prolongation operator from local (subdomain) interface to the
global interface and E performs some averaging.


The main idea of the BDDC ([1]) is to introduce a global coarse problem in order
to achieve better preconditioning and to fix ‘floating subdomains’ by making their
local Schur complements invertible. The matrix S is then positive definite, but it
is not block diagonal any more, R now represents splitting of the global interface
into subdomains except the coarse unknowns, and ET distributes residual among
neighbouring subdomains only in those interface unknowns which are not coarse.
Thus in BDDC, only part of the global residual is split into subdomains; residual
at the coarse unknowns is left undivided and it is processed by the global coarse
problem. However, it still can be formally written like (5).


4. Choice of the averaging operator E


Standard choices of E are arithmetic average, average weighted by diagonal en-
tries of matrices of local problems or a ratio of corresponding diagonal entries of local
and global Schur complements.


General formula introduced in [5] for computing local weights αi
k in i-th subdo-


main is


αi
k = dT


k (RiTSiRi)dk /d
T
k Ŝ dk (6)


for some choice of a set of test vectors dk. One option is to choose all the cartesian
basis vectors ek, which leads to a standard choice of using diagonal entries of Schur
complements. Our proposition is to choose several test vectors with nonzero values
at some selected nodes only and obtain some average value for these nodes (typically
face or edge, or only part of it). In this paper we tested only one variant described
below.


Variant I (tailored for 2D problems)


Select all cross-points as coarse. Then for i-th subdomain, for every face Fij


between i-th and j-th subdomain, choose only one vector dj in formula (6), with
ones in positions corresponding to nodes belonging to face Fij and zeros elsewhere.
This leads to just one value of αi


j assigned to every interface node of the face Fij in
i-th subdomain.
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5. Numerical results


For numerical comparison of different methods of averaging, a 2D Poisson equa-
tion on a rectangular domain with homogeneous Dirichlet boundary condition on
the opposite sides was chosen. The methods were tested first on the equation with
constant coefficients and then on the equation with jump in the coefficients. Coeffi-
cients are prescribed as piecewise constant on subdomains with jump in the rate of
1:9 along the part of the interface parallel with y axis.


The problem was discretized by FEM using 35 bilinear elements. The FEM
solution is depicted in the left side of Figure 1. The domain was divided into four
rectangular subdomains different in size, all of which have one side formed by the part
of the boundary with prescribed Dirichlet boundary condition. Only one continuity
constraint across the interface was chosen: A coarse node in the cross-point of all
four subdomains. Solution in the space of functions continuous in this coarse node
only is depicted in the right side of Figure 1.
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Figure 1: Test problem. 2D Poisson equation, bilinear elements, 4 subdomains,
1 coarse node chosen as the cross-point of all the subdomains. Continuous solution
(left) and solution with discontinuities across the interface (right).


BDDC was used in two different ways: either as a preconditioner combined with
PCG, or as a Richardson iteration method. The second technique is not the standard
use of the BDDC method, we choose it just for testing the numerical properties of
different methods of averaging.


Three different methods for choice of the averaging operator E were tested:


a) Arithmetic average.


b) Weighted average using ratio of corresponding diagonal entries of local and
global Schur complements.


c) The variant of (6) described in section 4 as Variant I.


Table 1 contains results for BDDC used as a Richardson method, Table 2 for
standard BDDC as a preconditioner combined with PCG. In both tables there are
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without jumps in coefficients with jump in coefficients
arithm. av. diag. Sch. d = (1, ..1) arithm. av. diag. Sch. d = (1, ..1)
1.52 1.50 1.44 2.31e+01 1.18 1.16
3.78e–01 3.71e–01 3.54e–01 6.73e+01 2.68e–01 2.59e–01
9.36e–02 9.10e–02 8.61e–02 1.96e+02 6.86e–02 6.59e–02
2.32e–02 2.24e–02 2.10e–02 5.66e+02 1.96e–02 1.84e–02
5.76e–03 5.50e–03 5.17e–03 1.63e+03 5.64e–03 5.37e–03


Table 1: Errors in the first 5 iterations, BDDC used as Richardson method.
Poisson equation with constant coefficients (left) and with jump in coefficients along
the interface (right).


without jumps in coefficients with jump in coefficients
arithm. av. diag. Sch. d = (1, ..1) arithm. av. diag. Sch. d = (1, ..1)
1.27 1.26 1.22 6.32 1.05 1.03
1.36e–02 1.26e–02 1.83e–02 1.67 6.29e–02 6.10e–02
1.21e–03 1.13e–03 1.51e–03 1.21e–02 4.30e–04 5.05e–04
2.82e–06 2.48e–06 1.43e–06 2.60e–03 9.07e–07 1.07e–06
1.69e–09 1.51e–09 2.02e–09 5.64e–05 2.09e–10 4.24e–10


Table 2: Errors in the first 5 iterations, BDDC used as a preconditioner for PCG.
Poisson equation with constant coefficients (left) and with jump in coefficients along
the interface (right).


norms of errors (Euclidean norm of vector of differences from exact FEM solution at
nodes) at first 5 iterations as a measure of the rate of convergence. In the left part
of the tables there are results for equation without jump in coefficients, in the right
part there are results for the jump.


Results show superiority of preconditioned PCG over Richardson iterations as
expected.


As for comparison of the three methods of averaging, for equation without jump
in coefficients (the first three columns of the tables), all three methods give very
similar rate of convergence in both ways BDDC was used. If we look at the slight
differences, we can see that if Richardson iteration is used, method c) gives the best
results and method a) the worst ones in every iteration, while if PCG is used, rating
of the methods changes in every iteration so it is difficult to decide which one is best.


However, for equation with jump in coefficients (the last three columns of the ta-
bles), there is remarkable difference between the arithmetic average a) and the other
two methods. In Richardson iteration the method a) does not lead to convergence at
all and in combination with PCG it leads to remarkably slower convergence than the
other methods. The other two methods are mutually comparable, method c) gives
slightly better results in Richardson iteration and method b) is better in combination
with PCG.
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6. Conclusions


We compared three different methods of averaging in BDDC method: two stan-
dard ones (arithmetic average and weighted average using ratio of corresponding
diagonal entries of local and global Schur complements) and one based on the new
proposition (6). A simple test of Poisson equation in 2D indicates that there is no
essential difference among the methods if there are no jumps in coefficients. On
the other hand, if there is a jump along the interface, arithmetic average performs
significantly worse than either one of the other two methods, which are mutually
comparable.


It seems that without presence of jumps in coefficients, the method of choice
is using arithmetic averages, because it is the simplest and also cheapest approach
to implementation. If the problem involves jumps in coefficients aligned to subdo-
main boundaries, the choice of weighted averages based on diagonals of the Schur
complements and the new approach seems equally efficient. In the most efficient
implementations, the Schur complements are not computed explicitly, and so the
new approach seems preferable. However, numerical results presented in this paper
are just preliminary and need to be confirmed by results for problems involving large
number of subdomains. We plan to perform such experiments in future.
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[5] Čert́ıková, M., Burda, P., Novotný, J., Š́ıstek, J.: Some remarks on averaging in
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Although my memories of childhood have mostly dissolved in the gray mist of
oblivion, the memory of the moment that I saw a miracle is still as vivid and im-
pressive as it was that day decades ago.


As a boy, I perceived my grandparents’ apartment as a realm of respectable
furniture that impressed me by its elegantly curved shapes, polished wood, and
decorative details; by its noble counter-distinction to the plain mass production of
the 1960’s. For me, the centerpiece was a glass cabinet where porcelain figurines,
china cups, rummers, and other little somethings were displayed. Among them, next
to a bright yellow bird nesting in a small cut crystal bowl, an engraved silver-like
box resided.


The door of the cabinet was locked but one afternoon my grandmother unlocked
it, took out the box and put it on the oval dining table next to the window. On
the table, she had ready a soup plate with a little water in it. She opened the box
and I caught sight of a brown ball that looked like made of hemp strings. She took
the ball and placed it in the center of the plate. The ball soaked with water and,
after a while, the clenched strings started to open. The seemingly dead tuft showed
signs and symptoms of a resurrection. A few spoons of plain water brought a brown
tangle into life. I encountered the Rose of Jericho.1


Michal’s appearance is neither knotted nor ball-shaped. Just opposite. Look at
his straight build and wide shoulders that reveal his past of an active swimmer. I do
not intend, however, to write about water in this direct sense. I would like to write
about Michal’s exceptional ability to actively respond to stimuli that we ordinary
people passively accept or even totally miss. For his mind, the same droplets of
information that uselessly trickle down our oblivious minds are moisture that results
in green sprouts of new knowledge.


1According to Wikipedia, different plant species (such as Anastatica hierochuntica, Selaginella
lepidophylla, or Pallenis hierochuntica) are commonly called the Rose of Jericho. I am not able
to determine the particular one that was in possession of my grandmother and that inspired this
article.
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Even cursory reading of his list of publications reveals the constantly widening
scope of Michal’s scientific interests. Although his early scientific writings followed
a rather standard path of a numerical analyst focused on the finite element method
and its theoretical background, in the 1990’s, however, his first paper on number
theory was published. At the same period of time, Liping Liu was awarded a visiting
scholar position in the Michal’s department in the Institute of Mathematics of the
Academy (Mathematical Institute at that time). The collaboration with Dr. Liu
resulted in several papers on the finite element method, but its side effects, as
I interpret them, were that, through Dr. Liu, Michal acquainted himself not only
with other Chinese mathematicians, but also with the achievements of ancient Chi-
nese mathematics and number theory in particular. Moreover, the Chinese calendar
system fitted well to his astronomy hobby.


The stay of Florian Luca, a number theory expert and another visiting scholar,
signaled that Michal’s number theory rose had come fully alive. It was the time
when also Lawrence Somer appeared on the scene (to stay there and, later, in the
Institute to this day) and when the trefoil celebrated the new millennium by a book
on Fermat numbers.


Astronomy, time measuring, and number theory merged in Michal’s research
of the Prague horologe and its mechanism. Consequently, it resulted in several
publications (jointly with Alena Šolcová and L. Somer) and in the introduction of
the Šindel sequence.


Michal’s passion for astronomy has found another fertile field in the problems con-
nected with the notion of gravitational aberration, that is, with the consequences of
the finite speed of gravity. Even by using high school mathematics, he has been able
to develop a consistent structure of predictions and to support them by a collection
of commonly available observations and measurements related to celestial mechanics.
Although his submissions on this topic are yet to be accepted and published, they
can at least serve as a proof that a new Rose of Jericho turns to green.


Meanwhile, quite a different subject has attracted Michal’s attention. Influenced
by Frantǐsek Katrnoška and by memorabilia of Vladimı́r Vand2 (that gave rise to
a biography of V. Vand by M. K. and A. Šolcová), he has occupied himself with
mathematical aspects of DNA and RNA codes. His first scientific paper on this
subject is under review in an international journal right now.


One might think that such diversity of topics has led to the neglect of the original
field of Michal’s research. The list of his publications shows that such a surmise is
wrong. He remains devoted to the finite element method, especially to geometric
aspects of finite element meshes, as is substantiated by papers written with various
co-authors — Jan Brandts, Antti Hannukainen, or Sergey Korotov, to list at least a
few of them.


2An amateur but distinguished astronomer and a professional crystallographer whose results
inspired F. H. C. Crick’s and J. D. Watson’s analysis of the DNA structure. A member of Michal’s
extended family.
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Michal Kř́ıžek is a gifted mathematician and a sort of a renaissance man. The list
of his achievements and activities is long. It includes his membership in the Learned
Society of the Czech Republic, the position of Editor-in-Chief of both Applications of
Mathematics and the membership journal of the Union of the Czech Mathematicians
and Physicists, almost uncountable activities in the field of popularization of sciences,
and many, many more.


I wish him decades of continued successful research in the fields that he has
already been exploring, as well as in topics that he has not touched upon yet, but
that are, droplet by droplet, soaking in his keen and persevering mind.
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Abstract


We review some numerical analysis of an adaptive finite element method (AFEM)
for a class of elliptic partial differential equations based on a perturbation argument.
This argument makes use of the relationship between the general problem and a model
problem, whose adaptive finite element analysis is existing, from which we get the
convergence and the complexity of adaptive finite element methods for a nonsymmetric
boundary value problem, an eigenvalue problem, a nonlinear boundary value problem
as well as a nonlinear eigenvalue problem.


1. Introduction


In this paper, we shall apply a perturbation argument to analyze the convergence
and the complexity of AFEMs for a class of elliptic partial differential equations. This
perturbation argument makes use of the relationship between the general problem
and a model problem, whose adaptive finite element analysis is existing. Based on
the perturbation argument, we get the convergence and the complexity of AFEMs
for a nonsymmetric boundary value problem, an eigenvalue problem, a nonlinear
boundary value problem as well as a nonlinear eigenvalue problem.


A standard AFEM consists of successive loops of the form


Solve → Estimate → Mark → Refine.


More precisely, given some finite element approximation, we generate a new mesh
by refining those elements where local error estimators indicate that the errors are
relatively large, and then, on this refined mesh, compute the next approximation.
We repeat this procedure until a certain accuracy is obtained. In this procedure an
a posteriori error estimator is crucial. For a posteriori error analysis, we refer to the
books [2, 22] and the references cited therein. Since Babuška and Vogelius [3] gave an
analysis of an AFEM for linear symmetric elliptic problems in one dimension, there
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has been much work on the numerical analysis of the convergence and the complexity
of AFEM in the literature [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].


Let Ω ⊂ R
d(d ≥ 1) be a polytopic bounded domain. We shall use the standard


notation for Sobolev spaces W s,p(Ω) and their associated norms and seminorms (see,
e.g., [1]). For p=2, we denote Hs(Ω)=W s,2(Ω) and H1


0 (Ω)={v ∈ H1(Ω) : v |∂Ω= 0},
where v |∂Ω= 0 is understood in the sense of trace, ‖ · ‖s,Ω = ‖ · ‖s,2,Ω. Throughout
this paper, we shall use C to denote a generic positive constant which may stand
for different values at its different occurrences. For convenience, the symbol . will
be used in this paper. The notation that A . B means that A ≤ CB for some
constant C that is independent of mesh parameters. All the constants involved are
independent of mesh sizes.


This paper is organized as follows. In the next section, we review some existing
results of AFEMs for a model problem. In section 3, we establish a general framework
to carry out the adaptive finite element analysis for a class of elliptic problems by
using the perturbation argument. Finally, we apply the general framework to four
kinds of problems, including a nonsymmetric boundary value problem, an eigenvalue
problem, a nonlinear boundary value problem and a nonlinear eigenvalue problem.


2. A model problem


Consider a homogeneous boundary value problem:


{
−∆u = f in Ω,


u = 0 on ∂Ω.
(1)


Letting a(·, ·) = (∇·,∇·), one sees that there exists a constant 0 < ca < ∞ such that


ca‖v‖
2
1,Ω ≤ a(v, v) ∀v ∈ H1


0 (Ω).


The energy norm ‖ · ‖a,Ω, which is equivalent to ‖ · ‖1,Ω, is defined by ‖w‖a,Ω =√
a(w,w) . The weak form of (1) reads as follows: find u ∈ H1


0 (Ω) such that


a(u, v) = (f, v) ∀v ∈ H1
0 (Ω). (2)


It is well known that (2) is uniquely solvable for any f ∈ H−1(Ω).
Let {Th} be a shape regular family of nested conforming meshes over Ω: there


exists a constant γ∗ such that hτ


ρτ
≤ γ∗ for all τ ∈ ∪hTh, where hτ is the diameter of τ ,


and ρτ is the diameter of the biggest ball contained in τ, h=max{hτ : τ ∈Th}. Let Eh
denote the set of interior faces (edges or sides) of Th. Let S


h
0 (Ω) ⊂ H1


0 (Ω) be a family
of nested finite element spaces consisting of continuous piecewise polynomials over Th


of fixed degree n ≥ 1, which vanish on ∂Ω.
A standard finite element scheme for (2) is: find uh ∈ Sh


0 (Ω) satisfying


a(uh, v) = (f, v) ∀v ∈ Sh
0 (Ω). (3)
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Let T denote the class of all conforming refinements by bisection of T0 that is the
initial mesh. For Th ∈ T and v ∈ Sh


0 (Ω) we define the element residual R̃τ (v) and
the jump residual Je(v) for (3) by


R̃τ (v) = f +∆v in τ ∈ Th,


Je(v) = −∇v+ · ν+ −∇v− · ν− = [[∇v]]e · νe on e ∈ Eh,


where e is the common side of elements τ+ and τ− with unit outward normals ν+


and ν−, respectively, and νe = ν−. For τ ∈ Th, we define the local error indicator
η̃h(v, τ) and the oscillation õsch(v, τ) by


η̃2h(v, τ) = h2
τ‖R̃τ (v)‖


2
0,τ +


∑


e∈Eh,e⊂∂τ


he‖Je(v)‖
2
0,e, (4)


õsc2h(v, τ) = h2
τ‖R̃τ (v)− R̃τ (v)‖


2
0,τ , (5)


where w is the L2-projection of w ∈ L2(Ω) to polynomials of some degree on τ or e.
We define the error estimator η̃h(uh, Th) and the oscillation õsch(uh, Th) by


η̃2h(uh, Th) =
∑


τ∈Th


η̃2h(uh, τ) and õsc2h(uh, Th) =
∑


τ∈Th


õsc2h(uh, τ).


We recall the well-known upper and lower bounds for the energy error in terms
of the residual-type estimator (see, e.g., [15, 17, 22]).


Theorem 2.1. Let u ∈ H1
0 (Ω) be the solution of (2) and uh ∈ Sh


0 (Ω) be the solution
of (3). Then there exist constants C̃1, C̃2 and C̃3 > 0 depending only on ca and the
shape regularity γ∗ such that


‖u− uh‖
2
a,Ω ≤ C̃1η̃


2
h(uh, Th),


C̃2η̃
2
h(uh, Th)− C̃3õsc


2
h(uh, Th) ≤ ‖u− uh‖


2
a,Ω.


Now we address the marking strategy of solving (3):


Given a parameter 0 < θ < 1 :


1. Construct a minimal subset Mk of Tk by selecting some elements in Tk such
that


η̃k(uk,Mk) ≥ θη̃k(uk, Tk). (6)


2. Mark all the elements in Mk.


For any Tk ∈ T and a subset Mk ⊂ Tk of marked elements at the kth step, the
“Refine” procedure outputs a conforming triangulation Tk+1 ∈ T, where all elements
of Mk are bisected at least once. We define


RTk→Tk+1
= Tk\(Tk ∩ Tk+1)


as the set of refined elements, thus Mk ⊂ RTk→Tk+1
.


We state an adaptive finite element algorithm for solving (3) as follows:
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Algorithm 2.1. Adaptive finite element algorithm


1. Pick an initial mesh T0 and let k = 0.


2. Solve (3) on Tk and get the finite element approximation uk.


3. Compute local error indicators η̃k(uk, τ) ∀τ ∈ Tk.


4. Construct Mk ⊂ Tk by a marking strategy that satisfies (6).


5. Refine Tk to get a new conforming mesh Tk+1.


6. Let k = k + 1 and go to 2.


For Algorithm 2.1, we have (see [5]).


Theorem 2.2. Let {uk}k∈N0
be a sequence of finite element solutions corresponding


to a sequence of nested finite element spaces {Sk
0 (Ω)}k∈N0


produced by Algorithm 2.1.
Then there exist constants γ̃ > 0 and ξ̃ ∈ (0, 1) depending only on the shape regularity
γ∗ and marking parameter θ such that for any two consecutive iterates, there holds


‖u− uk+1‖
2
a,Ω + γ̃η̃2k+1(uk+1, Th) ≤ ξ̃2


(
‖u− uk‖


2
a,Ω + γ̃η̃2k(uk, Th)


)
.


3. A general framework


We introduce the general framework established in [13]. Let u ∈ H1
0 (Ω) satisfy


a(u, v) + (V u, v) = (ℓu, v) ∀v ∈ H1
0 (Ω), (7)


where ℓ : H1
0 (Ω) → L2(Ω) is an operator and V : H1


0 (Ω) → L2(Ω) is a linear
bounded operator. Some applications of ℓ and V will be shown in section 4. We
assume that (7) has a unique solution u ∈ H1


0 (Ω).
For h ∈ (0, 1), let uh ∈ Sh


0 (Ω) be a solution of the following discretization problem:


a(uh, v) + (V uh, v) = (ℓhuh, v) ∀v ∈ Sh
0 (Ω), (8)


where ℓh : Sh
0 (Ω) → L2(Ω) is some approximate operator to ℓ.


Let K = (−∆)−1 : L2(Ω) → H1
0 (Ω). Then (7) and (8) can be rewritten as


u+KV u = Kℓu and uh + PhKV uh = PhKℓhuh,


where Ph : H1
0 (Ω) → Sh


0 (Ω) is defined by


a(u− Phu, v) = 0 ∀v ∈ Sh
0 (Ω).


We assume that there exists κ(h) ∈ (0, 1) such that κ(h) → 0 as h → 0 and


‖u− wh‖a,Ω ≤ C̃κ(h)‖u− uh‖a,Ω. (9)


We have for wh = Kℓhuh −KV uh that uh = Phw
h. Hence we obtain


‖u− uh‖a,Ω = ‖wh − Phw
h‖a,Ω +O(κ(h))‖u− uh‖a,Ω, (10)
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which implies that the error of the general problem is equivalent to that of the model
problem with ℓhuh − V uh as a source term up to the high order term.


Following the element residual R̃τ (uh) for (3), we define the element residual
Rτ (uh) for (8) as follows:


Rτ (uh) = ℓhuh − V uh +∆uh in τ ∈ Th.


For τ ∈ Th, we define the local error indicator ηh(uh, τ) and the oscillation osch(uh, τ)
from (4) and (5) by replacing R̃τ (uh) by Rτ (uh). And we set the error estimator
ηh(uh, Th) and oscillation osch(uh, Th) by


η2h(uh, Th) =
∑


τ∈Th


η2h(uh, τ) and osc2h(uh, Th) =
∑


τ∈Th


osc2h(uh, τ). (11)


Let h0 ∈ (0, 1) be the mesh size of the initial mesh T0 and define


κ̃(h0) = sup
h∈(0,h0]


max{h, κ(h)}.


Obviously, κ̃(h0) ≪ 1 if h0 ≪ 1.


Combing Theorem 2.1 with (10), we obtain the following a posteriori error esti-
mates which will be used to analyze the convergence and the complexity [13].


Theorem 3.1. Let h0 ≪ 1 and h ∈ (0, h0]. There exist constants C1, C2 and C3,
which only depend on the shape regularity constant γ∗ and ca, such that


‖u− uh‖
2
a,Ω ≤ C1η


2
h(uh, Th),


C2η
2
h(uh, Th) ≤ ‖u− uh‖


2
a,Ω + C3osc


2
h(uh, Th).


We use TH to denote a coarse mesh and Th to denote a refined mesh of TH .
Recalling that wh = K(ℓhuh − V uh) and wH = K(ℓHuH − V uH), we get (see [13]).


Lemma 3.1. If h,H ∈ (0, h0], then


‖u− uh‖a,Ω = ‖wH − Phw
H‖a,Ω +O(κ̃(h0)) (‖u− uh‖a,Ω + ‖u− uH‖a,Ω) ,


ηh(uh, Th) = η̃h(Phw
H, Th) +O(κ̃(h0)) (‖u− uh‖a,Ω + ‖u− uH‖a,Ω) ,


osch(uh, Th) = õsch(Phw
H , Th) +O(κ̃(h0)) (‖u− uh‖a,Ω + ‖u− uH‖a,Ω) .


The adaptive algorithm of solving (8), which we call Algorithm D, is nothing
but Algorithm 2.1 when η̃k are replaced by ηk. We may obtain from Theorem 2.2
and Lemma 3.1 that Algorithm D of (8) is a contraction with respect to the sum
of the energy error plus the scaled error estimator [13].
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Theorem 3.2. Let θ ∈ (0, 1) and {uk}k∈N0
be a sequence of finite element solutions


of (8) corresponding to a sequence of finite element spaces {Sk
0 (Ω)}k∈N0


produced by
Algorithm D. If h0 ≪ 1, then there exist constants γ > 0 and ξ ∈ (0, 1) depending
only on the shape regularity constant γ∗, ca and marking parameter θ such that


‖u− uk+1‖
2
a,Ω + γη2k+1(uk+1, Tk+1) ≤ ξ2


(
‖u− uk‖


2
a,Ω + γη2k(uk, Tk)


)
.


We turn to study the complexity in a class of functions defined by


As
γ = {v ∈ H1


0 (Ω) : |v|s,γ < ∞},


where γ > 0 is some constant,


|v|s,γ = sup
ε>0


ε inf
{T ⊂T0:inf(‖v−v′‖2a,Ω+(γ+1)osc2


T
(v′,T ))1/2≤ε:v′∈ST


0
(Ω)}


(
#T −#T0


)s


and T ⊂ T0 means T is a refinement of T0 and ST
0 (Ω) is the associated finite element


space. Since As
γ = As


1 for all γ > 0, we use As to stand for As
1, and use |v|s to


denote |v|s,γ. We have the optimal complexity as follows [13].


Theorem 3.3. Let u ∈ As and {uk}k∈N0
be a sequence of finite element solutions


corresponding to a sequence of finite element spaces {Sk
0 (Ω)}k∈N0


produced by Algo-


rithm D. If h0 ≪ 1, then


‖u− uk‖
2
a,Ω + γosc2k(uk, Tk) . (#Tk −#T0)


−2s|u|2s,


where the hidden constant depends on the discrepancy between
√


C2γ


C3(C1+(1+2CC1)γ)


and θ. Here C1, C2, C3 are constants appeared in Theorem 3.1 and C is some positive
constant depending on the data of the problem.


4. Applications


In this section, we apply the general framework to four examples and get the
convergence and the complexity of the corresponding adaptive finite element approxi-
mations.


4.1. A nonsymmetric boundary value problem


The first example is a second order nonsymmetric elliptic partial differential equa-
tion. We consider the following problem: find u ∈ H1


0 (Ω) such that


(∇u,∇v) + (b · ∇u, v) + (cu, v) = (f, v) ∀v ∈ H1
0 (Ω), (12)


where Ω ⊂ R
d(d ≥ 2) is a ploytopic domain, b ∈ [L∞(Ω)]d is divergence free,


c ∈ L∞(Ω), and f ∈ L2(Ω). We assume that (12) is well-posed, namely (12) is
uniquely solvable for any f ∈ H−1(Ω).
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A finite element discretization of (12) reads: find uh ∈ Sh
0 (Ω) such that


(∇uh,∇v) + (b · ∇uh, v) + (cuh, v) = (f, v) ∀v ∈ Sh
0 (Ω). (13)


It is seen that (13) has a unique solution uh if h ≪ 1 (see, e.g., [23]) and (13) is
a special case of (8), in which V w = b · ∇w + cw and ℓw = ℓhw = f ∀w ∈ H1


0 (Ω).
Consequently, wh = K(f − V uh). The element residual becomes


Rτ (uh) = f − b · ∇uh − cuh +∆uh in τ ∈ Th,


while ηh(uh, Th) and osch(uh, Th) are defined by (11).
Note that V : H1


0(Ω) → L2(Ω) is linear bounded and KV is compact over H1
0 (Ω).


Setting κ(h) = ‖(I + KV Ph)
−1‖‖KV (I − Ph)‖, we have that (9) holds [13]. Thus


Theorems 3.2 and 3.3 ensure the convergence and the complexity of AFEM for
nonsymmetric problem (12) [13].


4.2. An eigenvalue problem


A number λ is called an eigenvalue of the form a(·, ·) relative to the form (·, ·) if
there is a nonzero function u ∈ H1


0 (Ω), called an associated eigenfunction, satisfying


a(u, v) = λ(u, v) ∀v ∈ H1
0 (Ω). (14)


It is known that (14) has a countable sequence of real eigenvalues 0 < λ1 < λ2 ≤
λ3 ≤ · · · , and corresponding eigenfunctions u1, u2, u3, · · · , which can be assumed
to satisfy (ui, uj) = δij , i, j = 1, 2, · · · . In the sequence {λj}, the λj’s are repeated
according to their geometric multiplicity.


A standard finite element scheme for (14) is: find a pair of (λh, uh), where λh is
a number and 0 6= uh ∈ Sh


0 (Ω) satisfying


a(uh, vh) = λh(uh, vh) ∀vh ∈ Sh
0 (Ω). (15)


Let us order the eigenvalues of (15) as follows


λ1,h < λ2,h ≤ · · · ≤ λnh,h, nh = dim Sh
0 (Ω),


and assume that the corresponding eigenfunctions u1,h, u2,h, · · · , unh,h satisfy
(ui,h, uj,h) = δij , i, j = 1, 2, · · · . (15) is a special case of (8), in which V = 0, ℓu = λu
and ℓhu = λhuh. Consequently, w


h = Kλhuh. The element residual becomes


Rτ (uh) = λhuh +∆uh in τ ∈ Th,


while ηh(uh, Th) and osch(uh, Th) are defined by (11).
Let κ(h) = ρ


Ω
(h) + ‖u− uh‖a,Ω, where


ρ
Ω
(h) = sup


f∈L2(Ω),‖f‖0,Ω=1


inf
v∈Sh


0
(Ω)


‖(−∆)−1f − v‖a,Ω.


We have that (9) holds for linear eigenvalue problem (14) [9]. Thus, Theorems 3.2
and 3.3 ensure the convergence and the complexity of AFEM for eigenvalue prob-
lem (14) [9].
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4.3. A nonlinear boundary value problem


We consider the following nonlinear problem: find u ∈ H1
0 (Ω) such that


(∇u,∇v) + (f(·, u), v) = 0 ∀v ∈ H1
0 (Ω), (16)


where Ω ⊂ R
d(d = 1, 2, 3) is polytopic and f(x, y) is a smooth function on R


d × R
1.


For convenience, we shall drop the dependence of variable x in f(x, u) in the
following exposition and assume that (16) has a solution u ∈ H1


0 (Ω) ∩ H1+s(Ω)
(s ∈ (1/2, 1]).


A finite element discretization of (16) reads: find uh ∈ Sh
0 (Ω) such that


(∇uh,∇v) + (f(uh), v) = 0 ∀v ∈ Sh
0 (Ω). (17)


It is seen that (17) has a unique solution uh in the neighbour of u if h ≪ 1 (see,
e.g., [23, 24]). The element residual becomes


Rτ (uh) = −f (uh) + ∆uh in τ ∈ Th,


while ηh(uh, Th) and osch(uh, Th) are defined by (11).
If ‖uh‖0,∞,Ω . 1 and ‖u − uh‖a,Ω → 0 as h → 0, then (9) holds for nonlinear


boundary value problem [13, 24], where V = 0 and ℓhw = −f(w) for any w ∈ Sh
0 (Ω).


Thus, Theorems 3.2 and 3.3 ensure the convergence and the optimal complexity of
AFEM for nonlinear problem (16) [13].


4.4. A nonlinear eigenvalue problem


We turn to finite element approximations of the following nonlinear eigenvalue
problem: find λ ∈ R and u ∈ H1


0 (Ω) such that ‖u‖0,Ω = 1 and


(∇u,∇v) + (V u+N (u2)u, v) = λ(u, v) ∀v ∈ H1
0 (Ω), (18)


where Ω ⊂ R
3, V : Ω → R is a given function, and N has the following form:


N (ρ) = N1(ρ) +N2(ρ),


where ρ = u2, N1 : [0,∞) → R is a given function dominated by some polynomial,


and N2(ρ) =
∫
Ω


ρ(y)
|x−y|


dy. This is a special case of (8), in which ℓu = λu − N (u2)u


and ℓhu = λhuh − N (u2
h)uh. Hence, (9) holds for this kind of nonlinear eigenvalue


problems under some assumptions (see [7] for details).
Note that the element residual becomes


Rτ (uh) = λhuh −N (u2
h)uh − V uh +∆uh in τ ∈ Th,


while ηh(uh, Th) and osch(uh, Th) are defined by (11). Thus, Theorems 3.2 and 3.3
ensure the convergence and the complexity of AFEM for nonlinear eigenvalue prob-
lem (18) [7].
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Abstract


We deal with a numerical solution of nonlinear convection-diffusion equations with
the aid of the discontinuous Galerkin method (DGM). We propose a new hp-adaptation
technique, which is based on a combination of a residuum estimator and a regular-
ity indicator. The residuum estimator as well as the regularity indicator are easily
evaluated quantities without the necessity to solve any local problem and/or any re-
construction of the approximate solution. The performance of the proposed hp-DGM
is demonstrated


1. Introduction


Our aim is to develop a sufficiently robust, efficient and accurate numerical
scheme for the simulation of viscous compressible flows. The discontinuous Galer-


kin (DG) methods have become very popular numerical techniques for the solu-
tion of the compressible Navier-Stokes equations. Recent progress of the use of the
DG method for compressible flow simulations can be found in [8].


In this paper, we solve a scalar nonlinear convection-diffusion equation (which
represents a model problem for the system of the compressible Navier-Stokes equa-
tions) with the aid of the DG method. We propose a hp-adaptive method which
allows the refinement in the element size h as well as in the polynomial degree p.
Similarly as the h version of the finite element methods, a posteriori error estimates
can be used to determine which elements should be refined. However a single error
estimate cannot simultaneously determine whether it is better to do h or p refine-
ment. Several strategies for making this determination have been proposed over
the years, see, e.g., [7] for a survey or [12]. Based on many theoretical works, e.g.,
monographs [10, 11] or survey paper [2], we expect that an error converges at an
exponential rate in the number of degree of freedom.
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There exist many theoretical works deriving a posteriori error estimates based on
various approaches for linear or quasi-linear problems, e.g., [9]. On the other hand,
the amount of papers dealing with a posteriori error estimates for strongly non-linear
problems is significantly smaller. Some overview of a posteriori error estimates can
be found in [13].


We propose a new hp-adaptation strategy which is based on a combination of
a residuum estimator and a regularity indicator. The residuum estimator gives
a lower estimate of the error measured in a dual norm. It is locally defined for
each mesh element, it is easily evaluated and is implementation is very simple. The
regularity indicator is based on the integration of interelement jumps of the approx-
imate solution over the element boundary. Taking into account results from a priori
error analysis (e.g., [4]), we define the regularity indicator. If this value is smaller
than one then we apply a p-refinement otherwise we use a h-refinement. However,
a rigorous theoretical justification of this approach is completely open. On the other
hand, advantage of the proposed strategy is its simple applicability to general prob-
lems without any modification.


2. Problem description


2.1. Governing equations


We consider a stationary convection-diffusion equation


∇ · f(u) = ∇ · (K(u)∇u) + g, (1)


where u : Ω → R is the unknown scalar function defined in a bounded domain
Ω ∈ R


d, d = 2, 3. Moreover, g : Ω → R, f (u) = (f1(u), . . . , fd(u)) : R → R
d and


K(u) = {Kij(u)}
d
i,j=1 : R → R


d×d are nonlinear functions of their arguments. For
simplicity, we consider a homogeneous Dirichlet boundary condition over the whole
boundary of Ω. However, an extension to a possible combination of nonhomogeneous
Dirichlet and Neumann boundary conditions is straightforward.


2.2. Discretization of the problem


Let Th (h > 0) be a partition of the closure Ω of the domain Ω into a finite
number of closed d-dimensional simplicies K with mutually disjoint interiors. We
call Th = {K}K∈Th


a triangulation of Ω and do not require the conforming properties
from the finite element method.


Over the triangulation Th we define the so-called broken Sobolev space


Hs(Ω,Th) := {v; v|K ∈ Hs(K) ∀K ∈ Th}, s ≥ 0, (2)


where Hs(D) denotes the Sobolev space over domain D. Moreover, to each
K ∈ Th, we assign a positive integer pK (=local polynomial degree). Furthermore,
over the triangulation Th we define the finite dimensional subspace of H1(Ω,Th)
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which consists of in general discontinuous piecewise polynomial functions associated
with the set {pK , K ∈ Th} by


Shp = {v; v ∈ L2(Ω), v|K ∈ PpK(K) ∀K ∈ Th}, (3)


where PpK (K) denotes the space of all polynomials on K of degree ≤ pK , K ∈ Th.


Let the form ch : Shp × Shp → R denote a discretization of (1) with the aid of
interior penalty discontinuous Galerkin method, for its determination, see, e.g., [4, 6],
particularly,


ch(u, v) :=
∑


Γ∈Fh


∫


Γ


H(u|
(+)
Γ , u|


(−)
Γ ,n) [[v]] dS −


∑


K∈Th


∫


K


f(u) · ∇v dx,


+
∑


K∈Th


∫


K


K(u)∇u · ∇v dx−


∫


Ω


g v dx


−
∑


Γ∈F I
h


∫


Γ


(


{{K(u)∇u}} · n[[v]]− g{{K(u)∇v}} · n[[u]]
)


dS


−
∑


Γ∈FD
h


∫


Γ


(


K(u)∇u · nv − gK(u)∇v · n(u− uD)
)


dS


+
∑


Γ∈F I
h


∫


Γ


σ[[u]] [[v]] dS +
∑


Γ∈FD
h


∫


Γ


σ(u− uD) v dS, (4)


where H is the numerical flux known from finite volume method, Γ∈F I
h and Γ∈FD


h


are the sets of all interior and boundary faces, respectively, Fh = F I
h ∪FD


h , u|
(+)
Γ and


u|
(−)
Γ are the traces of u ∈ Hs(Ω,Th) on Γ ∈ Fh, and {{u}} = (u|


(+)
Γ + u|


(−)
Γ )/2 and


[[u]] = u|
(+)
Γ − u|


(−)
Γ are the mean value and the jump on Γ, respectively. Moreover,


uD is the given Dirichlet boundary condition, σ is the penalty parameter and
g = −1, 0, 1 for SIPG, IIPG and NIPG variants of DGFE method, respectively.


We say that a function uh ∈ Shp is an approximate solution of (1), if


ch(uh, vh) = 0 ∀vh ∈ Shp. (5)


Let us note that if u ∈ H2(Ω) is the exact solution of (1) then the consistency of ch
gives


ch(u, v) = 0 ∀v ∈ H2(Ω,Th). (6)


3. Residuum estimates


In this section we investigate the discretization error u − uh and define esti-
mators giving some information about this error. Based on them we propose the
hp-adaptation strategy.
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3.1. Residuum definition


In order to introduce our adaptation strategy, we proceed to a functional rep-
resentation of the DG method. Let X be a linear function space such that u ∈ X
and uh ∈ X . It is equipped with a norm ‖·‖X . (The space X does not need to be
complete with respect to ‖·‖X .) In our case, X := H2(Ω,Th), the norm ‖·‖X will be
specified later. Let X ′ denote the dual space to X .


Moreover, let Ah : X → X ′ be the nonlinear operator corresponding to ch by


〈Ahu, v〉 := ch(u, v), u, v ∈ X, (7)


where 〈·, ·〉 denotes the duality between X ′ and X . We define the dual norm by


‖Ahu‖X′ := sup
06=v∈X


〈Ahu, v〉


‖v‖X
. (8)


Let u ∈ H2(Ω) ⊂ X be the solution of (1). In virtue of (6) and (7), we have
Ahu = 0. Therefore, the value


R(uh) := ‖Ahuh − Ahu‖X′ = ‖Ahuh‖X′ = sup
06=v∈X


〈Ahuh, v〉


‖v‖X
= sup


06=v∈X


ch(uh, v)


‖v‖X
(9)


defines the residuum error in the dual norm of the approximate solution uh∈Shp⊂X .
The right-hand side of (9) depends only on uh and not on u. However, its is im-
possible to evaluate R(uh), since the supremum is taken over an infinite-dimensional
space. Therefore, in our approach, we seek the maximum over some sufficiently large
but finite dimension subspace of X .


3.2. Global and element residuum estimators


For each K ∈ Th and each integer p ≥ 0, we define the space


SpK := {φh ∈ X, φh|K ∈ P p(K), φh|Ω\K = 0}. (10)


Obviously, SpK ⊂ Sp+1
K ⊂ Sp+2


K ⊂ . . . , K ∈ Th. Moreover, we put


S+
hp := {φ ∈ X ;φ =


∑


K∈Th


cKφK , cK ∈ R, φK ∈ SpK+1
K , K ∈ Th}. (11)


Finally, we observe that Shp ⊂ S+
hp.


Now, we define the element residuum estimator


ηK(uh) := sup
06=ψh∈S


pK+1


K


ch(uh, ψh)


‖ψh‖X
= sup


ψh∈S
pK+1


K
,‖ψh‖X=1


ch(uh, ψh), uh ∈ X, (12)


for each K ∈ Th and the global residuum estimator
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η(uh) := sup
06=ψh∈S


+


hp


ch(uh, ψh)


‖ψh‖X
= sup


ψh∈S
+


hp
,‖ψh‖X=1


ch(uh, ψh) uh ∈ X, (13)


which are easily computable quantities if ‖·‖X is suitably chosen, see [5].
Obviously, if u ∈ X is the exact solution of (1) then consistency (6) implies


0 = η(u) = ηK(u), K ∈ Th. Moreover, we have immediately a lower bound


η(uh) ≤ R(uh) = ‖Auh −Au‖X′ . (14)


However, it is open if there exists an upper bound, i.e., R(uh) ≤ Cη(uh), where
C > 0. This will be the subject of a further research.


Finally, we specify the choice of the norm ‖ · ‖X . This norm is generated by the
scalar product (u, v)X := (u, v)L2(Ω) + ε


∑


K∈Th
(∇u,∇v)L2(K), u, v ∈ X , where ε is


a constant reflecting a ratio between “diffusion” and “convection”. For the case of
the scalar equation (1) we put ε ≈ |K(·)|/|f(·)|.


Since the spaces SpK and Sp
′


K ′, K,K ′ ∈ Th, K 6= K ′ are orthogonal with respect
to (·, ·)X, we can show ([5]) that


η(uh)
2 =


∑


K∈Th


ηK(uh)
2. (15)


Therefore, it is sufficient to evaluate the element residuum estimators ηK for each
K ∈ Th. This is a standard task of seeking a constrained extrema over SpK+1


K with
the constrain ‖ψh‖X = 1. This can be done directly very fast since the dimension of
SpK+1
K , K ∈ Th is small, namely dim(SpK+1


K ) = (pk + 2)(pK + 3)/2 for d = 2.
Our interest is to find adaptively a mesh Th, a set {pK , K ∈ Th} and the


corresponding solution uh ∈ Shp such that the number of degree of freedom Nh


(= dim(Shp)) is small and


η(uh) ≤ ω, (16)


where ω > 0 is a given tolerance.
In order to define an adaptive algorithm, we require that


ηK(uh) ≤ ω(#Th)
−1/2 ∀K ∈ Th, (17)


where #Th denotes the number of elements of Th. Obviously, if (17) is satisfied then,
due to (15), condition (16) is valid and the adaptation process stops. Otherwise, we
mark for refinement all K ∈ Th violating (17).


Furthermore, all marked elements will be refined either by h- or by p-adaptation,
namely, either we split a given mother element K into four daughter elements or
we increase the degree of polynomial approximation for a given element. Thus new
mesh Tĥ and new set {p̂K , K ∈ Tĥ} are created. We interpolate the old solution on
a new mesh and perform the next adaptation step till (16) is valid.
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3.3. Regularity indicator


The estimation of the regularity of the solution is an essential key of any
hp-adaptation strategy. Our approach is based on a measure of inter-element jumps.
Numerical analysis [4] carried out for scalar convection-diffusion equation gives


∑


K∈Th


∫


∂K


[[uh − u]]2 dS =
∑


K∈Th


∫


∂K


[[uh]]
2 dS ≤ C


∑


K∈Th


h2µK−1
K |u|2HsK (Ω), (18)


where u and uh are the exact and the approximate solutions, respectively, C > 0 is a
constant independent of h and µK = min(pK +1, sK). Moreover, pK is the degree of
the polynomial approximation and sK is the integer degree of local regularity of u,
i.e., u|K ∈ HsK(K), K ∈ Th. The a priori error estimates (18) imply that if the
exact solution is sufficiently regular then the p-adaptation (increasing of the degree
of approximation) yields to a higher decrease of the error. Otherwise, h-adaptation
(element splitting) is more efficient.


Furthermore, the numerical experiments indicates that
∫


∂K


[[uh − u]]2 dS =


∫


∂K


[[uh]]
2 dS ≈ Ch2µK−1


K |u|2HsK (Ω), K ∈ Th. (19)


Based on relation (19), we propose the regularity indicator


gK(uh) :=


∫


∂K∩Ω
[[uh]]


2 dS


|K|h2pK−2
K


, K ∈ Th, (20)


where |K| is the area of K ∈ Th. If the exact solution is sufficiently regular, i.e.,
sK ≥ pK + 1, then gK(uh) ≈ O


(


h2pK+1
K /(h2Kh


2pK−2
K )


)


= O(hK). On the other hand,
if the exact solution is not sufficiently regular, i.e., sK < pK + 1 (⇔ sK ≤ pK), then
gK(uh) ≈ O


(


h2sK−1
K /(h2Kh


2pK−2
K )


)


= O(h2δ−1
K ), where δ = sK − pk ≤ 0. Then we use


the following strategy


gK(uh) ≤ 1 ⇒ solution is regular ⇒ p-refinement,
gK(uh) > 1 ⇒ solution is irregular ⇒ h-refinement,


K ∈ Th. (21)


Finally, let us note, that on the basis of numerical experiments we use a small
modification of (20), namely


g̃K(uh) :=


∫


∂K∩Ω
[[uh]]


2 dS


|K|h2pK−4
K


, K ∈ Th, (22)


which is more efficient than (21).


4. Numerical experiments


We present several numerical examples which demonstrate a performance of the
presented hp-DGFE method. The DGFE discretization (5) leads to a nonlinear
algebraic system which is solved iteratively with the aid of a Newton-like method.
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4.1. Linear equation with boundary layers


We consider the scalar linear convection-diffusion equation (similarly as in [3])


−ε△u−
∂u


∂x1
−


∂u


∂x2
= g in Ω := (0, 1)2, (23)


where ε > 0 is a constant diffusion coefficient. We prescribe a Dirichlet boundary
condition on the whole ∂Ω. The source term g and the boundary condition are
chosen so that the exact solution has the form


u(x1, x2) = (c1 + c2(1− x1) + exp(−x1/ε)) (c1 + c2(1− x2) + exp(−x2/ε)) (24)


with c1 = − exp(−1/ε), c2 = −1 − c1. The solution contains two boundary layers
along x1 = 0 and x2 = 0, whose width is proportional to ε. Here we consider ε = 10−2


and ε = 10−3.
The computation started on a uniform triangular grid with mesh spacing h = 1/8


and with piecewise linear approximation. The hp-DGFE method was applied with
ω = 10−4 till the algorithm was finished. Tables 1 and 2 show the computational
errors ‖eh‖L2(Ω) and ‖eh‖X for each level of the hp-adaptation. Moreover, the tables
present the experimental order of convergence (EOC) with defined for each pair of
successive adaptation levels l and l + 1 by


EOC =
log ‖ehl+1


‖ − log ‖ehl‖


log(1/
√


Nhl+1
)− log(1/


√


Nhl)
, l = 1, 2, . . . , (25)


where hl and hl+1 denotes the corresponding hp-meshes and Nh = dim(Shp). Finally,
these tables contain the value of the global residuum estimator η(uh) given by (13)
and the “effectivity index” ieff := η(uh)/‖eh‖X . Let us not that ieff is not the standard
effectivity index since η is an estimation of the error in the dual norm whereas ‖eh‖X
is the error in the primal norm.


lev #Th Nh ‖eh‖L2(Ω) EOC ‖eh‖X EOC η(uh) ieff
0 128 384 6.19E-02 – 3.93E-01 – 1.04E+00 2.65
1 128 768 3.46E-02 1.68 3.91E-01 0.01 6.09E-01 1.56
2 128 1240 1.92E-02 2.46 2.52E-01 1.84 3.41E-01 1.35
3 158 1950 7.03E-03 4.44 1.21E-01 3.25 1.63E-01 1.35
4 236 3432 1.56E-03 5.33 3.72E-02 4.16 4.83E-02 1.30
5 380 6304 1.88E-04 6.95 6.93E-03 5.53 7.41E-03 1.07
6 554 10418 1.44E-05 10.24 7.86E-04 8.67 8.40E-04 1.07
7 776 17116 7.15E-07 12.09 5.76E-05 10.53 5.67E-05 0.98


Table 1: Problem (23) – (24) with ε = 10−2: computational errors, estimator η(uh)
and index ieff .
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lev #Th Nh ‖eh‖L2(Ω) EOC ‖eh‖X EOC η(uh) ieff
0 128 384 1.89E-02 – 2.63E-02 – 6.47E-01 24.64
1 128 768 1.76E-02 0.20 5.15E-01 -8.59 5.28E-01 1.02
2 146 1172 1.82E-02 -0.17 5.27E-01 -0.11 6.20E-01 1.18
3 206 2040 1.58E-02 0.53 4.53E-01 0.55 6.61E-01 1.46
4 368 4414 1.24E-02 0.63 3.89E-01 0.39 5.46E-01 1.41
5 920 11412 7.98E-03 0.92 3.04E-01 0.52 4.19E-01 1.38
6 1982 25050 2.93E-03 2.54 1.54E-01 1.72 2.06E-01 1.34
7 4016 50528 5.78E-04 4.63 4.80E-02 3.33 6.06E-02 1.26
8 7217 91242 6.56E-05 7.36 9.32E-03 5.55 1.14E-02 1.22
9 12050 176863 6.32E-06 7.07 1.32E-03 5.92 1.69E-03 1.28
10 23684 368615 3.99E-07 7.53 8.48E-05 7.47 9.46E-05 1.11


Table 2: Problem (23) – (24) with ε = 10−3: computational errors, estimator η(uh)
and index ieff .


P2P2


P3P3


P4P4


P5P5


P6P6


P7P7


hp


P2P2


P3P3


P4P4


P5P5


P6P6


P7P7


hp


Figure 1: The final grid with the corresponding degrees of polynomial approximation,
the whole domain (left) and its detail (0, 1/16)× (0, 1/16) (right) for ε = 10−3.


We observe that the computational error eh converge exponentially in both pre-
sented norms. Moreover, we found that the effectivity index ieff is very close to one
for increasing Nh. However, a theoretical justification of this favorable property is
quite open and it will be a subject of the further research.


Furthermore, Figure 1 shows the final hp-grid obtained with the aid of the
hp-DGFE algorithm for ε = 10−3. We observe that the h-adaptation was carried
out in regions with the boundary layers are presented. On the other hand, the
p-adaptation appears in regions where the solution is regular.


Finally, let us note that the presented strategy is not too efficient for problems
with boundary layers since our h-adaptation is only isotropic. More efficient is the
use of an anisotropic mesh adaptation.
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lev #Th Nh ‖eh‖L2(Ω) EOC ‖eh‖X EOC η(uh) ieff
0 128 384 8.28E-03 – 9.13E-03 – 8.24E-02 9.03
1 128 768 1.83E-03 4.35 2.71E-03 3.50 1.95E-02 7.20
2 128 1272 6.92E-04 3.86 1.64E-03 2.00 7.00E-03 4.27
3 128 1522 7.18E-04 -0.41 1.42E-03 1.58 3.29E-03 2.31
4 131 1693 3.10E-04 15.81 9.93E-04 6.75 1.62E-03 1.64
5 143 2095 1.53E-04 6.60 7.59E-04 2.52 6.37E-04 0.84
6 161 2540 6.86E-05 8.35 5.39E-04 3.56 4.98E-04 0.92
7 167 2661 2.67E-05 40.15 3.74E-04 15.57 3.45E-04 0.92
8 203 3383 1.02E-05 8.02 2.63E-04 2.92 2.32E-04 0.88
9 206 3449 4.68E-06 80.24 1.87E-04 35.53 1.61E-04 0.86
10 215 3632 3.35E-06 12.94 1.32E-04 13.36 1.14E-04 0.86
11 227 3854 3.14E-06 2.17 9.37E-05 11.65 8.06E-05 0.86


Table 3: Problem (26): computational errors, estimator η(uh) and index ieff .


4.2. Nonlinear convection-diffusion equation


We consider the scalar nonlinear convection-diffusion equation


−∇ · (K(u)∇u)−
∂u2


∂x1
−
∂u2


∂x2
= g in Ω := (0, 1)2, (26)


where K(u) is the nonsymmetric matrix given by


K(u) = ε


(


2 + arctan(u) (2− arctan(u))/4
0 (4 + arctan(u))/2


)


. (27)


We put ε = 10−4 and prescribe a Dirichlet boundary condition on the whole ∂Ω.
The source term g and the boundary condition are chosen so that the exact solution
is u(x1, x2) = (x21 + x22)


−3/4x1x2(1 − x1)(1 − x2). This function has a singularity at
x1 = x2 = 0 and it is possible to show (see [1]) that u ∈ Hκ(Ω), κ ∈ (0, 3/2),
where Hκ(Ω) denotes the Sobolev-Slobodetskii space of functions with ”non-integer
derivatives”. Numerical examples presented in [6], carried out for a little different
problem, show that this singularity avoids to achieve the orders of convergence better
than O(h3/2) in the L2-norm and O(h1/2) in the H1-seminorm for any degree of
polynomial approximation. Nevertheless, the exact solution is regular outside of the
singularity.


The computation was started on a uniform triangular grid with mesh spacing
h = 1/8 and with piecewise linear approximation. Then the hp-DGFE method was
applied with ω = 10−4 till the algorithm was finished. Table 3 shows the compu-
tational errors ‖eh‖L2(Ω) and ‖eh‖X for each level of the hp-adaptation including
EOC, the global residuum estimator η(uh) and the effectivity index ieff . We observe
that the adaptive algorithm significantly reduces the computational error eh with
a small Nh. Moreover, the effectivity index ieff converges to a constant value.
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5. Conclusion and outlook


We presented a new hp-adaptive method for the solution of convection-diffusion
problems. This approach is based on a combination of the residuum estimator and
the regularity indicator. Numerical experiments indicate its efficiency and a reliabil-
ity. The subject of the further research will be numerical analysis of the presented
method, and an extension to unsteady problems.
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Abstract


The global existence of weak solution is proved for the problem of the motion of several


rigid bodies in a barotropic compressible fluid, under the influence of gravitational


forces.


1. Introduction


The study of motions of rigid or elastic bodies in a fluid has been studied during
these last years. The presence of particles affects the flow of the liquid, and the fluid,
in turn, affects the motion of particles, so that the problem of determining the flow
characteristics strongly couples the fluid and solid motions. Here we are interested
in the problem of several rigid bodies embedded into a viscous fluid. The fluid and
rigid bodies are contained in a fixed open bounded set of R3. We will suppose that
the underlying continuum is a compressible newtonian fluid. We suppose that both
media (fluid and solids) are under the influence of selfgraviting forces. As a physical
motivation, one can think to the astrophysical situation of a selfgravitating planetary
system moving into a slightly viscous interstellar medium.


Historically, the weak formulation of the problem has been introduced and studied
by Judakov see [28] and after that by many authors: Desjardins and Esteban [4, 5],
Hoffmann and Starovoitov [26, 27], San Martin, Starovoitov, Tucsnak [33], Serre [34],
Galdi [20], among others.


In these problems the chalenging point is the existence of collisions. Let us first
mention that in the case of compressible fluids this problem has been clarified by
E. Feireisl in [13] who considered a rigid sphere surrounded by a compressible viscous
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fluid inside a cavity and constructed a “paradoxical” solution to the subsequent
problem in which the sphere sticks to the ceiling of the cavity without falling down.


In the incompressible setting Hesla [23] and Hillairet [24] proved a no-collision
result when there is only one body in a bounded two dimensional cavity. Later on
the result was extended to the three dimensional situation by Hillairet and Taka-
hashi [25].


Let us mention the main results known in the compressible case. In the absence
of solids, in dimension n > 2 the proof of the existence of weak solutions for (1) was
shown by P. L. Lions for γ > 9/5 when n = 3 see [29]. This result was extended by
E. Feireisl, where the compactness of density was proved for γ > 3/2 for n = 3 in [12]
and extension to the gravitational case with non monotone pressure was presented
in [7] (for a review of general strategies of approximation schemes in compressible flu-
ids see [11, 15, 32]). Concerning the motion of rigid bodies in a viscous compressible
case let us once more mention the work of Feireisl [13], where the existence of global
in time weak solution was proved. Comparing with results in the incompressible
case, there is no restriction on the existence time, regardless of possible collisions of
two or more bodies or contact of a body with the boundary. To be complete, let us
mention that strong existence of the motion of rigid bodies in a viscous compressible
case was recently investigated by Boulakia and Guerrero [1].


Our modest aim is that those of [13] in the compressible case also extend to the
“interacting” gravitational Navier-Stokes-Poisson system with possibly non mono-
tone pressure.


2. The compressible case


We consider the motion of N rigid bodies Bi for i = 1, · · ·, N with smooth
boundaries, in a smooth domain Ω ⊂ R


3. The bodies have constant densities ρi,
i = 1, · · ·, N , masses mi, i = 1, · · ·, N and we denote by Ωf(t) := Ω\


⋃N
i=1Bi the


domain occupied by the fluid, the evolution of which is governed by the compressible
Navier-Stokes system











∂tρf + div(ρf~vf ) = 0,


∂t(ρf~v) + div(ρf~vf ⊗ ~vf ) +∇P (ρf) = div T(~vf ) + ρf ~Ff + ρg.


(1)


Here ρf is the density, ~vf is the velocity, ~Ff is the body-force field (selfgravitation
and gravitational action from bodies) given by Ff(x, t) = 4πG∇Φ, with


Φ(x, t) :=


∫


Ω


ρf (y, t)


|x− y|
dy +


N
∑


i=1


ρi


∫


Bi(t)


dy


|x− y|
, (2)


where G is the Newton’s constant.
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We suppose that the fluid is newtonian with viscous stress tensor T given by the
constitutive law


T(~vf ) ≡ 2µD(~vf) + λI div~vf , (2′)


P is the pressure, D is the strain tensor with D(~v) = 1/2 (∇~v +t ∇~v).


The two Lamé viscosity coefficients λ and µ are real constants and satisfy the
stability requirements


µ > 0, 2µ+ 3λ > 0, (3)


and the pressure P (ρf) is related to the density ρf by a general barotropic constitutive
law (see [7] for motivations) satisfying











P ∈ C1(R+), P (0) = 0,


1


a
zγ−1 − b 6 P ′(z) 6 azγ−1 + b for all z > 0,


(4)


for two constants a > 0 and b > 0.


The evolution of the rigid body Bi is characterized by the motion of its center of
mass


Xi(t) =
1


mi


∫


Bi(t)


ρi~x dx,


and its inertia tensor Ji given for any pair of vectors ~a,~b by


J (t)~a ·~b =


∫


Bi(t)


ρi(~a× (~x− ~Xi)) · (~b× (~x− ~Xi)) dx.


The velocity of x ∈ Bi in the Eulerian coordinate system can be written as


~ui(t, x) = ~Ui(t) +Oi(t)(~x− ~Xi(t)), ~Ui(t)
d


dt
~Xi(t).


where Oi(t) is the angular velocity matrix of Bi.
The matrix Oi(t) and is skew-symmetric then there is a vector ~ωi such that


Qi(t)(~x− ~Xi) = ~ωi(t)× (~x− ~Xi).


Each solid Bi is submitted to exterior forces (gravitation) ~Fi together with the con-
tact forces at the various interfaces ∂Bi(t). Assuming continuity of velocity, we
set


lim
y→x


~v(t, y) = ~ui(t, x) for any x ∈ ∂Bi(t), i = 1, · · ·, N. (5)


Whenever Ω is bounded, we also consider the no-slip boundary condition


lim
y→x


~v(t, y) = ~0 for any x ∈ ∂Ω. (6)
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So assuming continuity of stress, the balance laws for linear and angular momenta
for Bi(t), i = 1, · · ·, N read


mi
d


dt
~Ui(t) =


∫


Bi(t)


ρi ~Fi dx+


∫


∂Bi(t)


(T− P I)~n dσ, (7)


and


Ji(t)
d


dt
~ωi(t)


∫


∂Bi(t)


ρi


(


~x− ~Xi


)


× (T− P I)~n dσ +


∫


Bi(t)


ρi(~x− ~Xi)× ~Fi dx, (8)


with Fi(x, t) = 4πG∇Φi, with


Φi(x, t) :=


∫


Ω


ρf(y, t)


|x− y|
dy +


∑


j 6=i


ρj


∫


Bj(t)


dy


|x− y|
. (9)


2.1. Variational formulation


Let us assume that


“The sets Bi(t) are connected and compact, with Bi(t) 6= ∅,
∣


∣∂Bi(t)
∣


∣ = 0, ” (10)


for any t ∈ [0, T ] and each i = 1, · · ·, N .
We denote the time-dependent fluid region by Qf ≡ ((0, T )× Ω) \Qs, where


Qs ≡ {(t, x) | t ∈ [0, T ], x ∈ ∪N
i=1Bi(t)} is the solid region, we also set (Qs)i ≡


{(t, x) | t ∈ [0, T ], x ∈ Bi(t)}


ρ = ρf +


N
∑


i=1


ρiχi, ~v =


∣


∣


∣


∣


~vf in Qf ,
~ui in (Qs)i.


, ~F = ~Fs +


N
∑


i=1


~Fiχi, (11)


where χi is the characteristic function of Bi.
Then, we have the weak form of the continuity equation (1)1


∫ T


0


∫


Ω


ρ∂tφ+ ρ~v · ∇φ dx dt = 0 (12)


for any test function φ ∈ D′((0, T )× Ω).
Similarly the momentum equation (1)2 with (2) and (9) reads


∫ T


0


∫


Ω


(ρ~v) · ∂tφ+ [ρ~v ⊗ ~v] : D(φ) + Pdivφ dx dt =


∫ T


0


∫


Ω


T : D(φ)− ρ~F · φ dx dt


(13)
for any test function φ ∈ T (Qs), where


T (Qs) ≡ {φ ∈ D((0, T )× Ω) | D(φ) = 0 on an open neighbourhood of Qs}.


86







The motion of the solids is described through a family of isometries of R3 by


~ηi(t, s) : R
3 → R


3, Bi(t) = ~ηi(t, s)[Bi(s)] for 0 6 s 6 t 6 T,


or equivalently


~ηi(t, s) = ~ηi(t, 0) (~ηi(s, 0))
−1 ,


where the mappings ~ηi satisfy


~ηi(t, 0)(~x) ≡ ~ηi[t](~x) = ~Xi(t) +Oi(t)~x, Oi(t) ∈ SO(3).


We say that the velocity ~v is compatible with the family {Bi, ~ηi, i = 1, · · ·, N} if
the functions t → ~ηi[t](~x) are absolutely continuous on (0, T ) for any x ∈ R


3 and if


(


∂


∂
~ηi[t]


)


(


(~ηi[t])
−1 (~x)


)


= ~v(t, x) for i = 1, · · ·, N, for x ∈ Bi(t) and a.e. t ∈ (0, T ).


(14)
In other words if


~v(t, x) = ~ui(t, x) ≡ ~Ui(t) +Oi(t)(~x− ~Xi(t)) for x ∈ Bi(t) and a.e. t ∈ (0, T ),


where


~Ui(t) =
d


dt
~Xi(t),


d


dt
Oi(t)O


T
i (t) = Qi(t).


We say that relations (12) (13) and (14) represent a weak formulation of (1)(5)(6).
In the spirit of [15], just mention two facts. The first one is that any classical


solution ρ of (1)1 is also a renormalized solution i.e. for any b ∈ C1(R) such that
b′(z) ≡ 0 for z large enough


∂tb(ρ) + div(b(ρ)~v) + (ρb′(ρ)− (b(ρ)) div~v) = 0 in D′((0, T )× Ω), (15)


and secondly, the following dissipative condition implied by the energy inequality


∫


R3


[


1


2
ρ|~v|2 +Π(ρ)−


1


2
GρΦ(ρ)


]


dx+


∫ T


0


∫


R3


2µ(ρ)|D(~v)|2+λ(ρ)(div ~v)2dx dt 6 E0,


(16)


where Π(ρ) = ρ
∫ ρ


1
P (z)
z2


dz.


2.2. Main result


Using the previous global quantities (ρ(t, x), ~v(t, x)) for the fluid-solid mixture
leads formally to the integro-differential system equivalent to (1), (5), (6), (7), (8)


{


∂tρ+ div(ρ~v) = 0,


∂t(ρ~v) + div(ρ~v ⊗ ~v)− div (2µ(ρ)D(~v))−∇ (λ(ρ)div~v) +∇P = ρ~F ,
(17)
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for t > 0, with initial conditions


ρ|t=0 = ρ0(x), ρ~v|t=0 = ~m0(x), on R
3. (18)


Theorem 1. Suppose that Ω ⊂ R
3 and let initial data ρ0, ~m0 be such that


ρ0 > 0, ρ0 ∈ Lγ(Ω), (19)


~m0 = 0 a.e. on the set {x ∈ Ω | ρ0 = 0},
~m2


0


ρ0
∈ L1(Ω), (20)


and {(Bi)0}i=1,···,N be given satisfying (10).
Suppose that γ > 3/2 and that λ and µ are two positive constants.
Then the problem (1), (5), (6), (7), (8) admits a variational solution ρ, ~v and


{Bi, ~ηi}i=1,···,N on Q := ((0, T )× Ω satisfying


ρ(0) = ρ0, (ρ~v)(0) = ~m0, Bi(0) = (Bi)0 i = 1, · · ·, N,


where the second equality is understood in the sense


∫


Ω


~m0 · φ dx = lim
t→0+


∫


Ω


(ρ~v)(t) · φ dx, (20′)


for any test function φ ∈ D(Ω) such that D(φ) = 0 in a neighbourhood of
⋃N


i=1Bi(0).


The proof of Theorem 1 will rely on the weak-convergence technique developed
in [13] with the gravitational ingredient of [7] (see also [11, 15, 32]): assuming that
we have constructed a sequence of approximate solutions


(


ρn, ~vn, {(Bi)n, (~ηi)n}i=1,···,N


)


,


one has to prove the convergence of the density


ρn → ρ strongly in C([0, T ];L1(Ω)), (21)


and of the convective term


ρn~vn ⊗ ~vn → ρ~v ⊗ ~v weakly in L1(Qf ), (22)


where ρ and ~v are the respective weak limits of the sequences ρn and ~vn.
Let us first quote a result from [13].
Let K be a compact non void domain in R


3. We denote by dK(x) the distance
from x to K and we define for any subset B ⊂ R


3 dbB(x), the signed distance from x
to ∂B, by


dbB(x) = d
R3\B (x)− dB (x) x ∈ R


3.


88







The sequence of sets Bn ⊂ R
3 is said to converge to B ⊂ R


3 in the sense of boundaries


Bn
b
→ B if dbBn


→ dbB in Cloc(R
3).


Proposition 1. Let ~vn(t, x) a family of functions such that t → ~vn(t, ·) is continuous
from [0, T ] to R


3 and x → ~vn(·, x) is measurable from R
3 to R


3 (Caratheodory), and
such that


t → ‖~vn(t, ·)‖L∞(R3) + ‖∇~vn(t, ·)‖L∞(R3),


is bounded in L2(0, T ).
Let ~ηn[t] : R


3 → R
3 the solution of the problem


d


dt
~ηn[t](x) = ~vn(t, ~ηn[t](x)), ηn[0](x) = x x ∈ R


3.


Let also Bn ⊂ R
3 be a sequence such that Bn


b
→ B, and denote by Bn(t) = ηn[t](Bn)


the image of Bn by the flow ~vn.
Then passing to sub-sequences


ηn[t] → η[t] in Cloc(R
3) as n → ∞ uniformly in [0, T ],


where η[t] solves


d


dt
~η[t](x) = ~v(t, ~η[t](x)), η[0](x) = x x ∈ R


3,


and ~vn → ~v in L2(0, T ;W 1,∞(R3)) weak-star.


Moreover Bn(t)
b
→ B(t) uniformly in [0, T ], where B(t) = η[t](B).


2.3. The approximation scheme


As in [13] we use the penalization method of San Martin, Starovoitov and Tucs-
nak [33] which amounts to replace the solids by a fluid with very high viscosity and
consider the regularized system


∂tρ+ div(ρ~v) = ε∆ρ,


∂t(ρ~v) + div(ρ~v ⊗ ~v)− div (2µ(χ)D(~v))−∇ (λ(χ)div~v) +∇p + ε∇~v · ∇ρ = ρ~F ,











(23)
where ε > 0, p is a regularized pressure defined by the constitutive relation


p = p(ρ) = P (ρ) + Aρβ with K > 0 and β > 4, (24)


and the viscosity coefficients are supposed to depend on an extra variable χ related to
velocity as follows. The system is completed by the Neumann boundary conditions


∇ρ · n|∂Ω = 0. (25)
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Defining a regularized velocity field by the convolution Rδ[~v](t, x) = ~v ∗ϑδ where
{ϑδ}δ>0 is a sequence of regularizing kernels (radially symmetric and radially non
increasing functions on R


3 supported in the ball B(0, δ) with
∫


ϑδ dx = 1), and the
corresponding characteristic curves ~η are such that


d


dt
~η[t](x) = Rδ[~v] (t, ~η[t](x)) , η[0](x) = x for x ∈ R


3.


Then, for a bounded open set O ⊂ R
3 we denote O(t) = η[t]O and we define


χ(t, x) ≡ dbO(t)(x) for any t ∈ [0, T ], x ∈ R
3. (26)


We supplement the system (23) with the initial data


ρ(0) = ρ0 ∈ C2+ν(R3), 0 < ρ 6 ρ0(x) 6 ρ, (27)


(ρ~v)(0) = ~m0, ~m0 ∈ C2(R3) (28)


Proposition 2. Let O ∈ R
3 be a bounded open set, the initial data (ρ0, ~m0)


satisfy (27) and (28) and let the pressure satisfy (24) with β > 4 and γ > 3/2.
Finally, let the viscosity coefficients µ, λ be smooth functions of χ satisfying


µ(χ) > µ0 > 0, λ(χ) + µ(χ) > 0 for any χ ∈ R.


Then the problem (23) admits a weak solution ρ > 0, such that


• Equation (23)1 holds a.e. on (0, T ) × R
3 and equation (23)2 holds in


D′((0, T )× R
3).


• The solution satisfies the energy inequality
∫


R3


[


1


2
ρ|~v|2 +Π(ρ)−


1


2
GρΦ(ρ)


]


dx


+


∫ τ


0


∫


R3


2µ|D(~v)|2dx dt+ λ(div ~v)2dx dt 6 E0, (29)


where Π(ρ) = ρ
∫ ρ


1
P (z)
z2


dz and E0 =
∫


R3


[


1
2


~m2


ρ0
+Π(ρ0)−


1
2
Gρ0Φ(ρ0)


]


dx.


• Moreover, the following estimate holds independently of χ


ε‖∇ρ‖2L2((0,T )×R3) 6 C(ρ0, ~m,K, β, µ0, G) (30)


and
‖∇ρ‖Lr+1(0,T ;L2(R3)) + ‖ρ‖Lβ+1((0,T )×R3))


+‖∂tρ‖Lr((0,T )×R3)) + ‖∆ρ‖Lr((0,T )×R3)) 6 C(ρ0, ~m,K, β, µ0, G) (31)


for a certain r > 1.


Proof: The proof follows from the results of [16] and [7] (the presence of the vari-
able χ does not modify essentially the arguments). �
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2.4. The high viscosity limit


We now study the problem (23)–(28) where ε, A > 0 are fixed and we only
consider the viscosity limit (i.e. the limit of viscosity coefficients µ = µn, λ = λn).
We set


λn(X) = λ+ nH(X + δ), µn(X) = µ+ µH(X + δ) (32)


with H = H(z) a smooth convex function, H(z) = 0, z ≤ 0, H(z) > 0. Otherwise,
the positive constants µ and λ satisfy


µ > 0, λ+ µ ≥ 0. (33)


From Proposition 1, the problem (23)–(28) has a weak solution ρn, vn for n = 1, 2.
Since (29)–(31) are independent of n then it implies


ρn → ρ in Lβ((0, T )× Ω) (34)


vn → v weakly in L2(0, T,W 1,2
0 (Ω)) (35)


(ρnvn) → ρv weakly in L2((0, T )× Ω) (36)


ρnvn ⊗ vn → Q weakly in L6/5((0, T )× Ω), (37)


where ρ, v satisfy (23)1 a.e. on (0, T )× Ω, the boundary condition (24) in the sense
of traces and the estimates (29)–(31) are satisfied.


From (34)–(37), (29), (32) we see that the limit functions ρ, u satisfy the energy
inequality (29) with µ and λ constant as in (33).


Moreover, from the previous limits, we obtain


ρn, ρ ∈ C([0, T ];L2(Ω)),


ρn(0) = ρ(0) = ρ0.


Further


‖∇ρn‖
2
L2((0,T )×Ω) → ‖∇ρ‖2L2((0,T )×Ω) (38)


and


∇vn∇ρn → ∇v∇ρ in D′((0, T )× Ω). (39)


Similarly as in [F] and applying Proposition 2.4 we get that vn = Rδ[vn], n = 1, 2, . . .
satisfy the hypotheses of Proposition 2.4 which implies


Xn(t) = dbOn(t) → dbO(t) in Cloc(R
3) uniformly in t ∈ [0, T ) (40)


where O(t) = µ[t](O),
d


dt
η(t)(x) = R0[u](t, µ[t](x)),


η[0](x) = x.
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Denoting
Qf = {(t, x)|t ∈ (0, T ), dbO(t)(x) + δ < 0}
Qs = {(t, x)|t ∈ (0, T ), dbO(t)(x) + δ > 0},


(41)


then from (40) we get


µn(Xn) = µ, λ(Xn) = λ on any compact Kf ⊂ Qf (42)


for all n ≥ n (Kf).
Applying the energy inequality (29) we obtain


D(vn) → 0 in L2(Ks) for any compact Ks ⊂ Qs. (43)


Then as in [F] we can find an open time interval J ⊂ (0, T ) and a neighbourhood
U = Uε(x) such that J × U ⊂ Qf , which together with (42), (23)2, (39)–(31) we get


∂tρn ∈ Lq(J,W−k,q(U)) for a certain, q > 1, k ≥ 1


which gives us


ρnvn → ρv ∈ C(J, L
2s
s+1


weak
(U)). (44)


This together with the imbedding


L
2β


β+1 (U) ⊂ W−1,2(U) (45)


implies that
ρnvn ⊗ vn → ρv ⊗ v weakly in L6/5((0, T )× U), (46)


and shows that Q = ρv ⊗ v a.e. on the set Qf .
Lemma 1. The following equivalence holds:


Q
s
≡ d(Qs) = {(t, x), t ∈ [0, T ], dbO(t)(x) + δ ≥ 0}


Proof: see [F].


Lemma 1 together with (44) implies that Q : D(ϕ) = ρu ⊗ u : D(ϕ) for any test
function ϕ ∈ T (Q


s
). Then we can pass to the limit in the momentum equation to


obtain the integral identity


∫ T


0


∫


RN


(ρv) · ∂tϕ+ [ρv ⊗ v] : D(ϕ) + p(p)divϕ+ d∇v∇ρϕdxdt


=


∫ t


0


∫


RN


T (u)D(ϕ)− ρF · ϕdxdt (47)


for any test function ϕ ∈ T (Q
s
), where T is given by (2)


′


.
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Similarly as in [F] we can consider the open set S ⊂ R
3, which can be written as


a union of a finite number of balls


S =
k
⋃


i=1


Uεi(xi).


Taking 0 < δ < min; (εi)


S = {x |dbO(x) + δ > 0}, O =
k
⋃


i=1


Uεi−δ(xi).


We define U i(t) = η[t](Uεi−δ(xi)). Because (43) it implies D(v(t)) = 0 a.e. on the set


U i
δ(t) = {x ∈ R


3|dbU i(t)(x) + δ > 0} for a.e. t ∈ [0, T ].


It implies v(t) is a rigid velocity on U i
δ and Rδ[v(t)] = v(t) a.e. on U i(t) for a.e.


t ∈ [0, T ). This implies that there is a system of isometries ηi[t) such that the system


of compacts {U
i


δ, η
i}ki=1 is compatible with the velocity v and denoting S =


⋃N
i=1Bi


(Bi are open connected) we find that v is compatible with the system {B
i
, ηi}Ni=1,


where the isometries ηi[t] coincide with η[t] on any of the balls U j
εj−δ contained in Bi.


We have then proved.


Proposition 1. Let Ω ⊂ R
3 be a bounded domain with the boundary ∂Ω of


class C2+ν , ν > 0. Let the pressure p be given by the constitutive law (24) where


β > max{4, γ}, γ >
4


3
.


Let the initial data ρ0, ~m0 have the properties required by (27)–(28),
q ∈ D((0, T )×Ω). Finally, let S ⊂ R


3 be an open set which can be written as a finite
union of balls. Let S =


⋃N
i=1B


i, where Bi are open connected. Then there exists
functions ρ ≥ 0, v such that


ρ ∈ L∞((0, T ); Lβ(Ω)), v ∈ L2(0, T,W 1,2
0 (Ω)),


and a system of isometries ηi(t) : R3 → R
3 having the following properties.


- The functions ρ, v satisfy the regularized continuity equation (23)1 a.e. on
(0, T )× Ω while the boundary condition (25) hold in the sense of traces.


- The variational form of the momentum equation (23)2 holds for any test func-
tion ϕ ∈ T (Q


s
) where


Q
s
= {(t, x) |t ∈ [0, T ], x ∈


m
⋃


i=1


ηi[t](Bi)}
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- the density ρ belongs to the class C([0, T ];L1(Ω)) and satisfies the initial condi-
tion (27). (The momentum (ρv) satisfies the initial condition (28) in the sense
of (20)′.


- the functions ρ, v satisfy the energy inequality (29) with the constant viscosity
coefficients µ, ν as well as (30)–(31) independently of B.


- the velocity v is compatible with the system {B
i
, ηi}Ni=1, Bi(0) = Bi,


i = 1, . . . , N .


2.5. The vanishing viscosity limit


Proposition 4. Let Ω ⊂ R
3 be a bounded domain with the boundary ∂Ω of


class C2+ν , ν > 0. Let the pressure p be given by the constitute law (24) with


β > max{7, γ}, γ > 4/3.


Let the initial data ϕ0, m0 have properties (27), (28). Finally, let S0 ⊂ R3 be an
open set which can be written as a finite union of holds,


B0 =
N
⋃


i=1


Bi
0, where Bi


0 are open and connected.


Then the problem (1)–(2) admits a variational solution ρ,v and {B
i
,ηi}Ni=1,n(0, T )×Ω


satisfying the initial conditions (27)–(28) and Bi(0) = Bi
0.


Proof: See [9].
It remains to show the energy inequality (29).


2.6. Sequential stability


The following stability results holds


Theorem 2. Let Ωn,Ω ⊂ R
3, be bounded domains such that Ωn ⊂ Ωn+1, Ωn


b
−→Ω


as n → ∞. Assume that the pressure p = pn is given by the constitutive relation


pn(p) = aργ + bnρ
β


with γ > 3/2, β > 1, bn → 0 as n → ∞.
Finally, let ρn, vn, {B̄


i
n, η


i
n}


N
i=1 be a sequence of variational solutions to the prob-


lem (1)–(9) on the sets (0, T )× Ωn such that


ρn(0) = ρ0,n → ρ0 in Lγ(R3)
(ρnvn)(0) = qn → q in L1(R3)


(48)


where ρ0, ~m0 satisfy the compatibility conditions (20). Moreover, let


E0,n → E0 =


∫


Ω


1


2


|m0|
2


ρ0
+


a


γ − 1
ργdx;


94







and
B


i


0,n ≡ B
i


n(0)
b


−→ B
i


0 for any i = 1, . . . , N,


where B
i


0 ⊂ R
3 satisfy (10) and


B
i


0,n = cl(Bi
0,n), Bi


0,n open, B
i
⊂ Bi


0,n for all n = 1, 2, . . . (49)


Then there is a subsequence such that


ρn → ρ in C([0, T ];R3)


vn → v weakly in L2(0, T ;W 1,2
0 (Ω)),


ηin[t] → ηi[t] in Cloc(R
3) uniformly in t ∈ [0, T ], (50)


and
B


i


n(t)
b


−→ B
i
(t) for all t ∈ [0, T ]


where ρ, v, {B
i
, ηi}Ni=1 is a variational solution of the Problem (1)–(9) on (0, T )× Ω


satisfying the initial conditions


ρ(0) = ρ0, (ρu)(0) = ~m0, B
i
(0) = B


i


0 for i = 1, . . . , N.
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Abstract


Runge–Kutta methods are widely used in the solution of systems of ordinary differ-
ential equations. Richardson extrapolation is an efficient tool to enhance the accuracy
of time integration schemes. In this paper we investigate the convergence of the combi-
nation of any explicit Runge–Kutta method with active Richardson extrapolation and
show that the obtained numerical solution converges under rather natural conditions.


1. Introduction


This paper is concerned with the numerical solution of initial value problems of
the form


y′ = f(x, y), y(a) = η, (1.1)


where y : IR → IRm is the unknown vector function, f : IR× IRm → IRm and η ∈ IRm


is a given initial vector. A solution is sought on the interval [a, b] of x, where a and b
are finite. It is assumed that f satisfies a Lipschitz condition, so that there existst
a unique solution y(x) of (1.1).


Explicit Runge–Kutta methods have the general form


yn+1 = yn + h
m
∑


i=1


biki (1.2)


with


k1 = f(xn, yn), ki = f


(


xn + cih, yn + h
i−1
∑


j=1


aijkj


)


, i = 2, . . . , m, (1.3)
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where bi, ci and aij ∈ IR are given constants. Here, as usual, yn denotes an approxi-
mation to the solution y(xn) of (1.1) at xn.


Richardson extrapolation is a powerful tool to increase the accuracy of some
numerical method. It consists in applying the given numerical scheme with different
discretization parameters (usually, h and h/2) and combining the obtained numerical
solutions by properly chosen weights. Namely, if p denotes the order of the selected
numerical method, wn the numerical solution obtained by h/2 and zn that obtained
by h, then the combined solution


yn =
2pwn − zn
2p − 1


has order p + 1. This method was first extensively used by L. F. Richardson, who
called it “the deferred approach to the limit” [7]. The Richardson extrapolation
is especially widely used for time integration schemes, when, as a rule, the results
obtained by two different time-step sizes are combined.


The Richardson extrapolation can be implemented in two different ways when
one attempts to increase the accuracy of a time integration method. When the active
Richardson extrapolation is used, the improved approximation for a given time layer
is not used in the further computations, while it is used in the computation of the
next approximation when the active Richardson extrapolation is utilized, see [9] in
more detail. These two version of the Richardson extrapolation are also described
in [2], where they are called global and local Richardson extrapolations.


It is not difficult to see that if the passive device is applied and the underlying
method has some qualitative properties (e.g., it is stable / convergent), then the
combined method also possesses property.


However, if the active device is used, then this is not valid anymore: any property
of the underlying method does not imply the same property of the combined method.
Therefore, the active Richardson extrapolation requires further investigation when
a given numerical method is applied. (That is why in the sequel we will focus on
the active version, and so Richardson extrapolation should always understood as
active Richardson extrapolation.) So far the studies have been concerned with the
order of the combined method, see e.g., [5], and its applications, such as air pollution
modelling [4], the Maxwell equations [2] and diffusion-convection equations with large
gradients [1].


During the applications, the investigation of A-stability of the combined method
is of great importance, therefore this issue has been widely investigated in the pre-
vious works. In [4], the stability of the Richardson extrapolation combined with the
backward Euler method and the trapezoidal rule was studied and applied efficiently
in an atmospheric chemistry model. In [9] the stability of the Richardson extrap-
olation combined with the general θ-method was studied in detail. It is important
to emphasize that these papers are concerned with the study of A-stability, which
characterizes the behavior of the numerical method on Dahlquist’s test problem [3],
and on a fixed mesh.


100







In this paper we concentrate on the question of convergence, which, according
to our knowledge, has not been investigated, and it was always hiddenly assumed
in the works. Here the question is whether the numerical solution converges to the
exact solution by reducing the step size. As we will see, this requires the property of
the well-known zero-stability. (We remind the reader of the basic difference between
A-stability and zero-stability: the first one gives the characterization of the numerical
method on some fixed mesh, while the second one examines the method on the
sequence of meshes with mesh sizes tending to zero.)


For the proof of the convergence we refer to a fundamental theorem of this subject,
see [6], p. 36, which we cite here. Consider the numerical method written in the
general form


k
∑


j=0


αjyn+j = hΦf (yn+k, yn+k−1, . . . , yn, xn; h), (1.4)


where the subscript f on the right-hand side indicates that the dependence of Φ on
yn+k, yn+k−1, . . . , yn, xn is through the function f(x, y). We impose the following two
conditions on (1.4):


Φf≡0(yn+k, yn+k−1, . . . , yn, xn; h) ≡ 0,


‖Φf (yn+k, yn+k−1, . . . , yn, xn; h)− Φf (y
∗


n+k, y
∗


n+k−1, . . . , y
∗


n, xn; h)‖


≤ M


k
∑


j=1


‖yn+j − y∗n+j‖,









































(1.5)


whereM is a constant. (These conditions are not very restrictive, e.g., the second one
is automatically satisfied if the initial value problem to be solved satisfies a Lipschitz
condition.)


Theorem 1.1. The necessary and sufficient conditions for the method (1.4) to be
convergent are that it be both consistent and zero-stable.


The necessary and sufficient conditions for consistency can be expressed by the first
characteristic polynomial ρ(ζ) =


∑k


j=0 αjζ
j of the method, namely, the method (1.4)


is consistent iff


ρ(1) = 0 (1.6)


and


Φf (y(xn), y(xn), . . . , y(xn), xn; 0)/ρ
′(1) = f(xn, y(xn)), (1.7)


see [6], p. 30.


For the condition of zero-stability we refer to the theorem on p. 35 of the same
book:
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Theorem 1.2. The necessary and sufficient condition for the method (1.4) to be
zero-stable is that it satisfies the root condition, i.e., the roots of ρ have modulus less
than or equal to unity, and those of modulus unity are simple.


Now our task is to write the combination of the explicit Runge–Kutta method and
Richardson extrapolation in the form of (1.4), and show that it possesses (1.5),
(1.6), (1.7) and the root condition of zero-stability.


2. The combined method as a one-step numerical method


The combination of the general explicit Runge–Kutta method with the Richard-
son extrapolation can be constructed in the following steps:


1) Make one step by time step h:


y
(1)
n+1 = yn + h


m
∑


i=1


biki,


k1 = f(xn, yn)


ki = f


(


xn + cih, yn + h
i−1
∑


j=1


aijkj


)


2) Make a step by time step h/2:


yn+ 1


2


= yn +
h


2


m
∑


i=1


bik̃i,


where


k̃1 = f(xn, yn)


k̃i = f


(


xn + ci
h


2
, yn +


h


2


i−1
∑


j=1


aij k̃j


)


.


From the obtained solution make a further step by h/2:


y
(2)
n+1 = yn+ 1


2


+
h


2


m
∑


i=1


bi
˜̃ki,


where


˜̃k1 = f


(


xn +
h


2
, yn+ 1


2


)


˜̃
ki = f


(


xn +
h


2
+ ci


h


2
, yn+ 1


2


+
h


2


i−1
∑


j=1


aij
˜̃
kj


)


.
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By computing a weighed average of the results by using the weights d1 for the solution
obtained by h and d2 for that obtained by h/2 (d1+d2 = 1), the combined numerical
solution reads


yn+1 = d1y
(1)
n+1 + d2y


(2)
n+1 = d1


[


yn + h
m
∑


i=1


biki


]


+ d2


[


yn +
h


2


m
∑


i=1


bi(k̃i +
˜̃ki)


]


.


From this, making use of the equality d1yn + d2yn = yn, we obtain


yn+1 − yn = d1h
m
∑


i=1


biki + d2
h


2


m
∑


i=1


bi(k̃i +
˜̃ki).


So, the function Φf =: ΦRE
f corresponding to the combined method has the form


ΦRE
f (yn, xn; h) = d1


m
∑


i=1


biki +
d2
2


m
∑


i=1


bi(k̃i +
˜̃ki). (2.8)


3. Checking the conditions for consistency and zero-stability


We have seen that the combined method has the form (1.4), where k = 1 (one-
step method), α0 = −1, α1 = 1 and Φf is as under (2.8). As one can easily check,
the first characteristic polynomial of the method is ρ(ζ) = −1 + ζ .


First we show that (1.5) holds under the usual conditions for the IVP. The first


condition follows from the fact that if f ≡ 0, then all the functions ki, k̃i and
˜̃
ki are


identically zero. It remains to check the Lipschitz condition.


It is sufficient to show that ki, k̃i and
˜̃
ki satisfy a Lipschitz condition, provided


that so does f , i.e.,
|f(xn, yn)− f(xn, y


∗


n)| ≤ L|yn − y∗n|.


From the Lipschitz property of f it follows that k1 and k̃1 also satisfy this property
with Lipschitz constant L.
Denote amax = maxi,j |aij|. Then


|ki − k∗


i | =


∣


∣


∣


∣


∣


f


(


xn + cih, yn + h


i−1
∑


j=1


aijkj


)


− f


(


xn + cih, y
∗


n + h


i−1
∑


j=1


aijk
∗


j


)
∣


∣


∣


∣


∣


≤ L


∣


∣


∣


∣


∣


yn + h


i−1
∑


j=1


aijkj − y∗n − h


i−1
∑


j=1


aijk
∗


j


∣


∣


∣


∣


∣


≤ L|yn − y∗n|+ Lh


i−1
∑


j=1


aij|kj − k∗


j |


≤ L


[


|yn − y∗n|+ hamax


i−1
∑


j=1


|kj − k∗


j |


]


.


Assume that k1, k2, k3, . . . , ki−1 all satisfy a Lipschitz condition, i.e.,


|kl − k∗


l | ≤ Ll|yn − y∗n|, l = 1, 2, . . . , i− 1.
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Then


|ki − k∗


i | ≤ L


[


|yn − y∗n|+ hamax


i−1
∑


j=1


|kj − k∗


j |


]


≤ L


[


|yn − y∗n|+ hamax


(


i−1
∑


j=1


Lj


)


|yn − y∗n|


]


≤ L


[


1 + (b− a)amax


i−1
∑


j=1


Lj


]


|yn − y∗n|,


where we used the length of the interval [a, b] as an upper bound for h. So, ki satisfies
a Lipschitz condition with Lipschitz constant Li = L[1+ (b − a)amax


∑i−1
j=1Lj ]. The


constant Li can be expressed by Li−1 as


Li = L


[


1 + (b− a)amax


(


i−2
∑


j=1


Lj + Li−1


)]


= Li−1 + L(b− a)amaxLi−1 = (1 + L(b− a)amax)Li−1.


Consequently, Li = (1 + L(b− a)amax)
i−1L1 = (1 + L(b− a)amax)


i−1L.


Since k̃1 = k1, therefore the same holds for k̃i.


Finally, the Lipschitz property of ˜̃ki follows from that of k̃i, since


|˜̃k1 −
˜̃k∗


1| =


∣


∣


∣


∣


∣


f


(


xn +
h


2
, yn +


h


2


m
∑


i=1


bik̃i


)


− f


(


xn +
h


2
, y∗n +


b− a


2


m
∑


i=1


bik̃
∗


i


)
∣


∣


∣


∣


∣


≤ L|yn − y∗n|+ L
h


2


m
∑


i=1


bi|k̃i − k̃∗


i |


|˜̃ki −
˜̃k∗


i | =|f


(


xn +
h


2
+ θi


h


2
, yn +


h


2


(


m
∑


i=1


bik̃i +
i−1
∑


j=1


aij
˜̃kj


))


−


− f


(
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m
∑


i=1


bi|k̃i − k̃∗


i |+


i−1
∑


j=1


aij |
˜̃kj −


˜̃k∗


j |


)


.


Now we check the conditions of consistency, i.e., (1.6) and (1.7). The first one
is easy to see by substituting ζ = 1 into the first characteristic polynomial ρ(ζ) =
−1 + ζ . Since ρ′(1) = 1, therefore the second condition reduces to the equality


ΦRE
f (y(xn), xn; 0) = f(xn, y(xn)). (3.9)
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For the combined method we have


ΦRE
f (yn, xn; 0) = d1


m
∑


i=1


bif(xn, yn) +
d2
2


(


m
∑


i=1


bi


)


2f(xn, yn)


= (d1 + d2)


(


m
∑


i=1


bi


)


f(xn, yn) = f(xn, yn),


which holds if and only if
∑m


i=1 bi = 1, which is always assumed, because it is required
for the consistency of the underlying Runge–Kutta method.


It remains to show that zero-stability holds for the combined method. According
to Theorem 1.2., the root condition is to be checked. Now the only root of the first
characteristic polynomial ρ(ζ) = −1 + ζ is equal to unity, therefore the combined
method trivially satisfies the root condition, and so the method is zero-stable.


Hence, we have proven the main result of the paper.


Theorem 3.1. Assume that some explicit Runge–Kutta method combined with the
active Richardson extrapolation is applied to problem (1.1), satisfying a Lipschitz
condition. Then the combined method is convergent.


4. Conclusion


In this paper we have shown that the combination of any explicit Runge–Kutta
method with the (active) Richardson extrapolation results in a convergent numerical
method under some rather natural conditions. In the proof we have used the concepts
of consistency and zero-stability.


In the future we plan to investigate the combination of a wider group of methods,
the so-called diagonally implicit Runge–Kutta methods [8] in combination with the
Richardson extrapolation.
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Abstract


This article formalizes some aspects of the board game Carcassonne. Combina-
torical problems related to the number of tile types are mentioned. Then the paper
describes a game map using graph theory.


1. Introduction


Carcassonne is a tile-based board game for two to five players, designed by Klaus-
Jürgen Wrede and published in 2000 by Hans im Glück Company in Germany1. It
received two most prestigious European awards (Spiel des Jahres and Deutscher
Spiele Preis) in 2001 and it was sold more than one million game sets. This game is
so much popular because it is quite variable (thanks many available expansions), its
rules are simple enough for pre-school children, and its strategy is intricate enough
for adults.


The aim of the paper is to formalize some of rules and principles of the game. In
the first chapter the rules of the game are shortly introduced. The second chapter
describes principles of the terrain tiles construction. The third chapter demonstrates
a graph-theory based method, providing description of the tile-covered area in any
moment of the game.


2. Rules of the game


The basic game tile set consists of 72 square terrain tiles with picture of landscape
part: green meadows, brown cities surrounded by city walls, roads, and cloisters. On
the start of the game one of these tiles is lying on the table its face up. On each turn
one player randomly draws one new terrain tile from a bag and places it adjacent to
tiles that are already faced up. At least one edge of the new tile must fit tightly to
the edge of some current placed tile, and roads must connect to roads, meadows to
meadows, and cities to cities (see Fig. 1).


1In the Czech Republic this game is distributed by Albi.
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Figure 1: A part of the Carcassonne board after several turns. (Adopted from
Wikimedia Commons, licensed under the Creative Commons. Author: Elentin.)


Once the tile is set, the player can occupy some feature on the new tile by his
wooden figurine under simple rules. During the game any completed features are
scored. A city is completed, when a city wall forms a closed cycle. Similarly, a road
is completed when it is at both ends terminated by crossing, city wall or cloister.
A cloister is completed when the tile with a cloister is fully surrounded with other
tiles. A player, occupying completed feature with his figurine, becomes its owner
and gains some amount of points, based on the principle “more is better”. After
then all figurines from this feature are removed.


The game ends when the last tile has been placed. At that time, all incomplete
features are scored, however for the cities their owner in this moment gains only half
of the points. In addition, the farms are determined (a farm is a conected area of
meadows), and scored. The player with the most points wins the game. For complete
rules see [3].


3. Terrain tiles and its types


The tiles are essence of the game, hence their description is crucial for under-
standing of the game. A set of tiles with identical layout we call a tile type.


3.1. Tile construction


Surveying a heap of diverse tiles in the box, we find that their construction follows
certain rules:


• A city wall begins at one corner of the tile and ends in another corner, and it
doesn’t touch the tile edge on the way. On the one side of the city wall is a city
terrain, on the other side is a meadow.
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• A city wall doesn’t intersect itself, another city wall or road.


• Every city area touches at least one edge of the tile. (It means that doesn’t
exist tiles like A or B on the Fig. 2. Such isolated city doesn’t make sense in
the game.)


• Inside of the tile it is at most one crossing or at most one cloister. There can
be more than one city gate (every gate in another connected part of a city)
together with one crossing.


• A road begins in a center of one tile edge and ends either on the center of
another tile edge, or inside the tile in a crossing, a city gate or a cloister. It is
at most one road end in the center of one tile edge. On both sides of the road
is a meadow.


• A road doesn’t intersect itself, another road or a city wall2.


• Every road segment has at least one end on the tile edge. (Similarly as for cities,
the intra-tile roads – for example on the tile C on the Fig. 2 – are useless.)


Figure 2: Examples of tiles, which doesn’t meet “tile rules” mentioned in 3.1: isolated
cities A and B, intra-tile road C. Dark grey area: city terrain, white area: meadow,
thick line: a road.


3.2. How many tile types exist?


At first we focus only on the tile edges, the interior of the tile we will examine
later. Tile edges determine possibility to locate a tile. A set of tiles with the same
layout of edges we call a group of tile types.


According to the rules concerned in section 3.1, every tile edge is characterised by
one of three “features”: road (R), city (C), or meadow (M). Starting from fixed tile
vertex (for example upper left corner), with fixed direction (for example clockwise),
there are 34 = 81 possibilities how the edge values can be placed. However, the tiles
can be rotated arbitrarily, and thus some possibilities are identical.


2In some expansion sets there exist tiles with bridge or tunnel. Although it looks interesting,
it damages planarity of the game graph (and – as consequence – complicates definition of farms)
without adding any new element to the game.
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Enumerating all different options, we see, that there exist following alternatives:
RRRR, RCCC, RRCC, RCRC, RRRC, RRCM, RRMC, RMRC plus alternatives
obtained by the cyclic shift R → C → M → R, it is 8 · 3 = 24 possible groups of tile
types.


In the game it is significant not only opportunity to locate tile to the specific
place, but also the tile interior structure. For example tiles 2a and 1a+1a/A on the
Fig. 5 can be located at the same place, but the first of them can relate to two cities,
whereas the second one relates only to one city. The tiles 1a and 1c on the Fig. 3
differ only in the shape of the city, which can affect determination of farms.


City tiles. One tile can contain parts of multiple cities, up to four. A part of
a single city on the tile (city element) can incide to one, two, three or four tile edges.
All possible city elements are sketched on the Fig. 3.


In fact, in the basic game set occur only elements 1a, 2a, 2c, 3a and 4a – we
denote these elements ordinary city elements The element 1c shows up in one of
expansion sets; the element 1b appears in another expansion set at the tile of the
CCCM type in combination with element 2a, not solitary. Elements 1d and 2b don’t
occur in any of the known tile sets, neither alone nor in combination. Elements 1b
and 1c we denote extraordinary city elements, elements 1d and 2b are excluded city
elements.


Figure 3: All possible shapes of city elements (1a – 4a) and road elements (I, IIa
and IIb). Dark grey area is a city terrain, white area is a meadow, thick line is
a road.


Combining these city elements, we obtain all types of tiles consisting only from
city and meadow terrain and not containing any road. The combining procedure is
demonstrated on the Fig. 4 for the group CCCM of tile types.
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Figure 4: All terrain tiles from the group CCCM, consisting exclusively from ordinary
city elements. Legend is the same as for Fig. 3.


Restricting to the ordinary city elements, we obtain these types of tiles:


• Group MMMM: a tile, containing only meadow and perhaps cloister inside,
not any city or road.


• Group CMMM: element 1a.


• Group CCMM: element 2a and combination of elements 1a+1a.


• Group CMCM: element 2c and combination of elements 1a+1a.


• Group CCCM: combinations of the elements 1a+1a+1a, 1a+2c, 1a+2a, 2a+1a
(different from the previous) and 3a.


• Group CCCC: combinations of elements 1a+1a+1a+1a, 1a+1a+2a, 1a+3a,
1a+2c+1a, 2a+2a and 4a.


There are 16 “city and meadow” tile types, made exclusively of ordinary city ele-
ments, and one “only meadow” type in total. However only 8 of them are contained
in the basic game set (many of remaining types one can found in some expansion
sets).


Road tiles. Because part of one road on the tile (road element) can incide to one
or two tile edges, there are only three possible road elements – see Fig. 3.


Combining all possible road elements, we obtain all types of tiles not containing
any city, namely:


• Group RMMM: road element I.


• Group RRMM: road element IIb and combination of the elements I+I.


• Group RMRM: road element IIa and combination of the elements I+I


• Group RRRM: combinations of the elements I+I+I and I+IIb (two possible
configurations).


• Group RRRR: combinations of the road elements I+I+I+I or IIb+IIb.


111







Note that these 10 tile types can have several subtypes – in the tile centre can be
either plain crossing or cloister3. Only 5 from these tile types are included in the
basic game set.


Complex tiles. Tiles, containing both city and road elements, can be generated
from “city and meadow” tile types named below by adding one, two and possibly
three road elements. The basic game set contains 6 of them (for details see section 3.3
or Fig. 5).


3.3. Basic game tile set


The basic game set consists from these tile types: one piece of the tile I+I+I+I
with plain crossing (group RRRR), three pieces of the tile 3a+I (group RCCC),
five pieces of the tile 2a+IIb (group RRCC), three pieces of tile 1a+I+I+I (group
RRRC), three pieces of the tile IIb+1a (group RRCM) and three pieces of its mirror
image 1a+IIb (group RRMC), four pieces of the tile 1a+IIa (group RMRC), one
piece of the tile 4a (group CCCC), five pieces of the tile 1a (group CMMM), two
pieces of the tile 1a+1a and five pieces of the tile 2a (both from group CCMM), tiles
1a+1a and 2c (both from group CMCM), three pieces each, four pieces of tile 3a
(group CCCM), four tiles with a cloister in the center (group MMMM), four pieces
of the tile I+I+I with plain crossing (group MRRR), nine pieces of the tile IIb (group
MMRR), eight pieces of the tile IIa (group MRMR), and two pieces of the tile I with
a cloister in the center (group MMMR). In the basic game set doesn’t occur any tiles
from the groups RCRC, CCMR, CCRM, CRCM, MMRC, MMCR, and MCMR.You
can see the sketch of all tile types from basic game set at Fig. 5. In the basic game
set there is in total 72 tiles in 19 different types. Non-presence of some tile types
(city + road + two meadows, two cities + road + meadow and RCRC group) seems
to be intentional. Thanks to this, a player can prevent his opponent from completing
his own city.


4. Map of the game


Observing the finished game, we can see a planar graph; edges of the graph
are roads and city walls. In the following paragraphs we demonstrate one possible
interpretation of this graph, which can be used for description of the game course.


In principle, we represent road as undirected path and city as interior of directed
cycle. Since border of the tile-occupied area influences determination of farms, we
have to reckon with them and perceive it as a edges of the graph as well. In the
graph of the game we define several types of vertices and edges:


Vertex types.


• City vertex represents an intersection of a citywall and tile corner. Vertex of
this type incide with at least one city edge and can incide with city edges, city
border edges or meadow border edges. Its degree is at least 2 and at most 8.


3In some expansion sets the tile centre can contain something else, for example volcano.
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Figure 5: List of all tile types, contained in the basic game set. Legend for cities,
roads and meadows is the same as for Fig. 3, grey square is a cloister.


• City corner vertex represents tile corner, which is surrounded by city terrain,
and is located on the border of playfield. It’s degree is 2 and incides with two
city border edges. This type of vertex is temporary and can be cancelled or
changed to a city vertex in the course of the game, when adjacent tile is added.


• Road end vertex represents definitive end of the road: crossing or cloister.
Degree of the vertex can be any number from 0 to 4 (zero degree can have only
a cloister) and incides only with road edges.


• Connecting road vertex represents intersection of a road and tile edge. This
vertex has degree 2 or 3 and can incide with road edges and meadow border
edges.


• Gate vertex represents intersection of the road and the city wall (city gate).
Degree of the vertex is 3 or 4 and incides with two city edges and one or two
road edges.


• Meadow vertex represents tile corner, which is surrounded by a meadow, and is
located on the border of the game. Its degree is 2 and incides with two meadow
border edges. Meadow vertex is temporary and can be cancelled in the course
of the game, when adjacent tile is added.
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Figure 6: Example of the two connected tiles and corresponding graph representa-
tion. Legend for vertices: black circle = city vertex, white circle = city corner vertex,
black square = road end vertex, white square = connecting road vertex, black dia-
mond = gate vertex, white hexagon = meadow vertex; edges: full line = road edge,
full arrow = city edge, dashed line = meadow border edge, dashed arrow = city
border edge.


Edge types.


• City edge represents a part of a city wall from one tile corner to another one,
or from tile corner to the city gate. This edge is directed; on the right side of
the edge is city terrain, on the left side is meadow. City edge can incide with
city vertex or gate vertex.


• City border edge represents edge of a tile, occupied by a city terrain, where it
isn’t adjacent tile. It is directed, on the right side of the edge is city terrain,
the left side is out of the tile. City border edge incides with city vertices or
city corner vertices.


• Road edge is undirected and represents a part of a road from one tile edge to
another tile edge, crossing, cloister or city gate. Road edge can incide with
road end vertex, connecting road vertex or gate vertex.


• Meadow border edge represents edge of a tile (or its part from tile corner to road
mouth), occupied by a meadow, where it isn’t adjacent tile. It is undirected
and can incide with meadow vertex, city vertex or connecting road vertex.


Both types of border edges are temporary and can be cancelled in the course of the
game, when adjacent tile is added.


Features. The next step is to identify in the game graph particular features: roads,
cities and farms. A road is undirected path, which all edges are road edges, all
vertices except endpoints are connecting road vertex, and which cannot be extended
according these rules. The road is completed, if both its endpoints are road end
vertices or gate vertices, or if it forms a closed cycle (a “roundabout”). Otherwise it
is incompleted road.
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Because the game graph is planar, its faces can be identified. Excluding the outer
face, the faces can be divided into two groups: cities and farms. The city is a face
surrounded by directed cycle, which go round the face clockwise. If all edges of this
cycle are city edges, then the city is completed, otherwise (at least one edge is a city
border edge) it is incompleted city. If the face isn’t city face nor outer face, we call
it a farm.


Figure 7: Example of the game graph with denoted features. Legend for vertices
and edges is the same as in Fig. 6. The face C1 is a completed city, the face C2 is
an incompleted city. The faces M1, M2 and M3 are farms. The road separating M1
and M2 is completed road, other two roads are incompleted.


Adding a new tile. Adding a tile to the game area can be interpreted as fusion
of two graphs: graph of the current game area and graph of the new tile. The new
added tile has to adjoin by at least one edge to edge of some current tile. Both of
these edges must have identical terrain – either a city, or a meadow, or a road.


If these tile edges adjoin to a city terrain, they are in a game graph represented by
a city border edges with opposite direction and their incident corners corresponds to
city vertices or city corner vertices. Appending the tile to a game means, that both
these edges evaporates, and head of one of these edges merges with tail of second
edge and vice versa. If at least one of merging vertices is city vertex, resulting vertex
will be city vertex. If both merging vertices are city corner vertices, they will be
both cancelled and both edges inciding with them will be fused to one edge. (Note
that both affected edges have congruent direction.)


If both tiles adjoin with meadow, they are represented by a meadow border edges
and their incident corners correspond to city vertices or meadow vertices. Appending
the tile to a game means, that both these edges disappear, and their corresponding
edges merges together. If at least one of merging vertices is city vertex, resulting
vertex will be city vertex. If both merging vertices are meadow vertices, they will be
both cancelled and the remaining meadow border edges inciding with them will be
fused.


The third case, a road, is similar to previous one. The only difference is, that both
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adjacent tile edges correspond to two subsequent meadow border edges, connected by
a connecting road vertex. Both these road vertices will be merged together; the two
remaining vertices and inciding edges will be handled as in previous case of “meadow
edges”.


When a player adds a tile to the game area, it can have one of more of following
impacts on the features: increasing of completing of the city, fusion of two or more
cities, elongating or completing of the road, joining of two roads, or fusion of two or
more farms.


5. Conclusions


This simple and widespread board game is tightly related with several fields of
mathematics – combinatorics, graph theory (and, of course, game theory).


Presented graph interpretation of the game is not the only reasonable approach.
Author with nick Mr. Wang in his post [2] proves that it is impossible to construct
a city using all 44 tiles from the basic tile set, containing a city. For this purpose he
uses graph, which is in principle dual to our interpretation.


The description of the game can be expanded: game scoring can be modelled
through graph labeling. For problems with property ownership the graph coloring
looks to be usefull.


References


[1] Demel, J.: Grafy a jejich aplikace. Academia, Praha, 2002.


[2] Mr. Wang: Carcassonne and Graph Theory. [online] <http://mathlaoshi.com/
2011/11/03/carcassonne-and-graph-theory/>. Posted on 2011-11-3, [cit.
2011-12-10].


[3] Carcassonne Central. [online] <http://www.carcassonnecentral.com/>. Up-
dated 2010-5-22, [cit. 2011-12-10].


116








Conference Applications of Mathematics 2012


in honor of the 60th birthday of Michal Kř́ı̌zek.
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Abstract


This article presents the numerical solution of laminar incompressible viscous flow
in a branching channel for generalized Newtonian fluids. The governing system of
equations is based on the system of balance laws for mass and momentum. The gen-
eralized Newtonian fluids differ through choice of a viscosity function. A power-law
model with different values of power-law index is used. Numerical solution of the de-
scribed models is based on cell-centered finite volume method using explicit Runge–
Kutta time integration. The unsteady system of equations with steady boundary
conditions is solved by finite volume method. Steady state solution is achieved for
t → ∞. In this case the artificial compressibility method can be applied. For the time
integration an explicit multistage Runge–Kutta method of the second order of accu-
racy in the time is used. In the case of unsteady computation two numerical methods
are considered, artificial compressibility method and dual-time stepping method. The
flow is modelled in a bounded computational domain. Numerical results obtained by
this method are presented and compared.


1. Introduction


Generalized Newtonian fluids can be subdivided according to the viscosity be-
haviour. For Newtonian fluids the viscosity is constant and is independent of the
applied shear stress (examples: water, kerosene etc). Shear thinning fluids are char-
acterized by decreasing viscosity with increasing shear rate (ketchup, honey, blood
etc). Shear thickening fluids are characterized by increasing viscosity with increasing
shear rate (wet sand etc.). For more details see e.g. [1].


2. Mathematical model


The governing system of equations is the system of balance laws of mass and
momentum for incompressible fluids [2]:


div u = 0 (1)
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ρ
∂u


∂t
+ ρ(u.∇)u = −∇P + div T (2)


where P is pressure, ρ is constant density, u is velocity vector. The symbol T


represents the stress tensor.
The commonly used model corresponding to Newtonian fluid is Newtonian model:


T = 2µ D (3)


where µ is dynamic viscosity and tensor D is symmetric part of the velocity gradient
defined by the relation


D =
1


2
(∇u+∇u


T ) =
1


2


(


2ux uy + vx
uy + vx 2vy


)


(4)


This model could be generalized to take into account shear thinning and shear
thickening behaviour


T = 2µǫµ D. (5)


For this case the viscosity µ is no more constant, but is defined by viscosity func-
tion µ(γ̇) according to the power-law model, [7]


µ = µ(γ̇) =
(√


trD2
)r


, (6)


where γ̇ =
√
trD2 is shear rate, µǫ is a constant, e.g. the dynamic viscosity for


Newtonian fluid. The symbol tr D2 denotes trace of the tensor D2. The exponent r
is the power-law index. This model includes Newtonian fluids as a special case
(r = 0). For r > 0 the power-law fluid is shear thickening, while for r < 0 it is shear
thinning.


3. Numerical solution


3.1. Steady case


In this case the artificial compressibility method can be applied. It means that
the continuity equation is completed by term 1


β2pt. For more details see e.g. [3].


This yields in the conservative form (non-dimensional):


R̃βWt + F c
x +Gc


y =
1


Re
(F v


x +Gv
y), (7)


R̃β = diag(
1


β2
, 1, 1), β ∈ R+ (8)


where W is vector of unknowns, p = P/ρ is pressure, u, v are velocity components,
F c, Gc are inviscid fluxes and F v, Gv are viscous fluxes defined as


W =











p
u
v








 , F c =











u
u2 + p
uv








 , Gc =











v
uv


v2 + p








 , (9)
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F v =











0
2µ(γ̇)ux


µ(γ̇)(vx + uy)








 , Gv =











0
µ(γ̇)(uy + vx)


2µ(γ̇)vy








 (10)


The symbol Re denotes Reynolds number defined by the expression


Re =
ρUL


µǫ


, (11)


where U, L are reference velocity and length, µǫ is dynamic Newtonian viscosity
and ρ is constant density. The parameter β has dimension of a speed and denotes
the artificial speed of sound. In the case of non-dimensional equations, β is then
divided by a reference velocity U . This is usually an upstream velocity, which does
not significantly differ from the maximum velocity in the flow field. Hence, in the
case of non-dimensional equations, β = 1 is used in the presented steady numerical
simulations.


Equation (7) is discretized in space by the finite volume method (see [5]) and the
arising system of ODEs is integrated in time by the explicit multistage Runge-Kutta
scheme (see [4], [9]):


W n
i = W


(0)
i


W
(s)
i = W


(0)
i − αs−1∆tR(W )


(s−1)
i (12)


W n+1
i = W


(M)
i s = 1, . . . ,M,


where M = 3, α0 = α1 = 0.5, α2 = 1.0, the steady residual R(W )i is defined by
finite volume method as


R(W )i =
1


µi


4
∑


k=1


[(


F
c


k −
1


Re
F


v


k


)


∆yk −
(


G
c


k −
1


Re
G


v


k


)


∆xk


]


, (13)


where µi is the volume of the finite volume cell, µi =
∫ ∫


Ci
dx dy. The symbols F


c


k, G
c


k


and F
v


k, G
v


k denote the numerical approximation of the inviscid and viscous physical
fluxes. The symbols ∆xk and ∆yk respectively are lengths of the kth-edge of the
cell Ci in the x and y direction resp. The symbol Re is Reynolds number defined
by (11). The mesh in the considered domain is assumed structured, the finite volume
cells are quadrilateral.


The multistage Runge–Kutta scheme (12) is conditionally stable. The time step
is chosen to satisfy the CFL conditions


∆t ≤ min
i,k


CFL µi


ρA∆yk + ρB∆xk +
2


Reµ(γ̇)
(


(∆xk)2+(∆yk)2


µi


) (14)


index k describes the index of edges corresponding to the finite volume cell Ci. The
volume of this cell is µi. The symbol CFL is so called Courant-Friedrichs-Lewy
number. The Re is Reynolds number defined by (11) and µ(γ̇) is defined by (6).
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The global behaviour of the solution during the computational process is followed
by the L2 norm of the steady residuum. It is given by


‖Res(W )n‖L2 =


√


√


√


√


∑


i


(


W n+1
i −W n


i


∆t


)2


(15)


where Res(W )n stands for a vector formed by the collection of Res(W )ni , ∀i. The
decadic logarithm of ‖Res(W )n‖L2 is plotted in graphs presenting convergence his-
tory of simulation.


3.1.1. Steady boundary conditions


The flow is modelled in a bounded computational domain where a boundary is
divided into three mutually disjoint parts: a solid wall, an outlet and an inlet. At
the inlet Dirichlet boundary condition for velocity vector is used and for a pressure
Neumann boundary condition is used. At the outlet the pressure value is given
and for the velocity vector Neumann boundary condition is used. The homogenous
Dirichlet boundary condition for the velocity vector is used on the wall. For the
pressure Neumann boundary condition is considered.


Remark


The problem is to numerically solve Navier–Stokes equations for incompress-
ible flows. Mathematical theory is possible to use for flow in one type of channel
(steady) for one or more outputs where existence and unicity of the solution is proved
(see [10], [11]).


3.2. Unsteady computation


Two approaches are used for numerical solution of unsteady flows. First, the
artificial compressibility method is applied. In this case the artificial compressibility
parameter β is set to be a big positive number, ideally β → ∞. β = 10 is used in
presented unsteady numerical simulations. In the second aproach dual-time stepping
method is used.


The artificial compressibility approach used for unsteady incompressible flows is
modifying the system of equations by adding an unsteady term to the continuity
equation in the same way as for steady case.


The principle of dual-time stepping method is following. The artificial time τ is
introduced and the artificial compressibility method in the artificial time is applied.
The system of Navier-Stokes equations is extended to unsteady flows by adding
artificial time derivatives ∂W/∂τ to all equations, for more details see [8], [6]


R̃βWτ + R̃Wt + F c
x +Gc


y = F v
x +Gv


y, (16)


R̃ = diag(0, 1, 1), R̃β = diag(
1


β2
, 1, 1). (17)
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The vector of the variablesW , the inviscid fluxes F c, Gc and the viscous fluxes F v, Gv


are given by (9).
The derivatives with respect to the real time t are discretized using a three-point


backward formula, it defines the form of unsteady residual


R̃β


W l+1 −W l


∆τ
= −R̃


3W l+1 − 4W n +W n−1


2∆t
− Res(W )l = −Res(W )l+1, (18)


where ∆t = tn+1− tn and Res(W ) is the steady residual defined as for steady compu-
tation, see (13). The symbol Res(W ) denotes unsteady residual. The superscript n
denotes the real time index and the index l is associated with the pseudo-time. The
integration in pseudo-time can be carried out by explicit multistage Runge–Kutta
scheme. The dual-time step ∆τ is estimated using (14). The dual-time step is limited
so that ∆τ ≤ 2∆t/3.


The solution procedure is based on the assumption that the numerical solution
at real time tn is known. Setting W l


i = W n
i , ∀i, the iteration in l using explicit


Runge-Kutta method are performed until the condition


‖Res(W )l‖L2 =


√


√


√


√


∑


i


(


W l+1
i −W l


i


∆τ


)2


≤ ǫ (19)


is satisfied for a chosen small positive number ǫ. The symbol Res(W )l stands for the
vector formed by the collection of Res(W )li, ∀i. Once the condition (19) is satisfied
for a particular l, one sets W n+1


i = W l+1
i , ∀i. Then the index representing real-time


level can be shifted one up. History of the convergence of unsteady residual in dual
time from tn to tn+1 is plotted in decadic logarithm.


3.2.1. Unsteady boundary condition


The unsteady boundary conditions are defined as follows. In the inlet, in the solid
wall and in one of the outlet part the steady boundary conditions are prescribed. In
the second outlet part new boundary condition is defined. For the velocity Neumann
boundary condition is used. The pressure value is prescribed by the function


p21 =
1


4


(


1 +
1


2
sin(ωt)


)


, (20)


where ω is the angular velocity defined as ω = 2πf , where f is a frequency.


4. Numerical results


4.1. Steady numerical results


In this section the steady numerical results of two dimensional incompressible
laminar viscous flows for generalized Newtonian fluids are presented. The different
values of the power-law index were used. Reynolds number is 400.


In Figure 1 and 2 velocity isolines and histories of the convergence are presented.
One of the main differences between Newtonian and non-Newtonian fluids flow is in
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(c) shear-thinning - r = −0.5


Figure 1: Velocity isolines of steady flows for generalized Newtonian fluids.
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Figure 2: History of the convergence of steady flows for generalized Newtonian fluids.


the size of the separation region. This is in the place where the channel is branched.
From Figures 1, the separation region is the smallest for shear thickening fluids and
the biggest separation region is for the shear thinning fluids.


In Figure 3 nondimensional axial velocity profile for steady fully developed flow
of generalized Newtonian. In these figures the small channel is sketched. The line
(inside the domain) marks the position where the cuts for the velocity profile were
done.


4.2. Unsteady numerical results


In this section two dimensional unsteady numerical results for generalized Newto-
nian flow through the branching channel are presented. The used unsteady methods
are the artificial compressibility method and the dual-time stepping method with
artificial compressibility coefficient β = 10. In the branch (going up) the pressure
is prescribed by pressure function (20) with two frequencies f , 2 and 20. In Figure
4 and 5 numerical results for artificial compressibility method are presented. In the
Figure 4 frequency is 2 and in the Figure 5 frequency is 20. First pictures show
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Figure 3: Nondimensional velocity profile for steady fully developed flow of general-
ized Newtonian fluids in the branching channel.
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Figure 4: The graphs of the velocity as the function of time and velocity isolines of
unsteady flow of generalized Newtonian fluids by artificial compressibility method
(frequency is 2).


graphs of velocity. The square symbols mark positions in time of the snapshots
shown in next three pictures during one period.


As initial data the numerical solution of steady fully developed flow of generalized
Newtonian fluid in the branching channel was used. Reynolds number is 400.


Next used method is the dual-time stepping method. As in previous method
three types of fluids were considered: Newtonian, shear thickening and shear thining
non-Newtonian. Unsteady boundary conditions were used. In the branch (going up)
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Figure 5: The graphs of the velocity as the function of time and velocity isolines of
unsteady flow of generalized Newtonian fluids by artificial compressibility method
(frequency is 20).


the pressure is prescribed by pressure function (20) with considered frequencies f , 2
and 20. In Figure 6 and 7 graphs of velocity as the function of time and the velocity
distribution are shown.


As initial data the numerical solution of steady fully developed flow of generalized
Newtonian fluid was used. In the Figure 6 the frequency is 2 and in the Figure 7 the
frequency is 20.


5. Conclusions


In this paper a finite volume solver for incompressible laminar viscous flows in the
branching channel was described. Newtonian model was generalized for generalizing
Newtonian fluids flow. Power-law model with different values of power-law index were
tested. The explicit Runge-Kutta method was considered for numerical modelling.
The convergence history confirms robustness of the applied method. The numerical
results obtained by this method were presented and compared.


Two unsteady approaches were considered, the artificial compressibility method
and the dual-time stepping method. Both methods were tested for generalized New-
tonian fluids with initial data obtained by steady numerical computation.
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Figure 6: The graphs of the velocity as the function of the time.
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Figure 7: The graphs of the velocity as the function of the time.
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[10] Kračmar, S. and Neustupa, J.: Global existence of weak solutions of a nonsteady
variational inequality of the Navier–Stokes type with mixed boundary condi-
tions. Proc. of the International Symposium on Numerical Analysis, Charles
University Prague, (1993) 156–177.
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Abstract


We present an algorithm for constructing families of conforming (i.e. face-to-face)
nonobtuse tetrahedral finite element meshes for convex 3D cylindrical-type domains.
In fact, the algorithm produces only path-tetrahedra.


1. Introduction


Nonobtuse simplicial elements play an important role in the finite element analy-
sis of boundary value problems, since they yield monotone stiffness matrices and
thus guarantee the validity of the discrete maximum principle when solving many
elliptic boundary value problems (see [2, 3]). Note that even one obtuse simplex
in a triangulation may destroy the discrete maximum principle [3]. In [7], we gave
a global refinement algorithm which produces only nonobtuse tetrahedra. In [8, 9, 10]
several algorithms are designed for various local nonobtuse tetrahedral refinements.
However, in all the above mentioned works only the case of polyhedral domains is
considered but in practice we may also have domains with curved boundaries, the
generation and appropriate refinements of finite element meshes for which can be
considerably more dificult, or at least requiring a special treatment, see e.g. [6, 12]
and references therein in this respect.


In this paper we present an algorithm for generating and appropriate refining, in
a face-to-face manner, nonobtuse tetrahedral meshes for some cylindrical-type do-
mains with curved boundaries. (We notice that the case of isoparametric elements [5]
is not considered here.)


Recall that a tetrahedron is said to be nonobtuse, if all its six angles between
faces, the so-called dihedral angles, are nonobtuse (i.e. not larger than right). The
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Figure 1: Path-tetrahedron (left), decomposition of a rectangular block in 6 path-
tetrahedra (center), and decomposition of a right-angled prism in 3 path-tetrahedra.


path tetrahedron is a special case of nonobtuse tetrahedra, it has three mutually
orthogonal edges that form a path (in the sense of graph theory).


In Figure 1 we depict an example of a path-tetrahedron, a decomposition of
a rectangular block in 6 path-tetrahedra, and a decomposition of a right-angled
prism in 3 path-tetrahedra.


2. Basic idea


To explain the main steps of the algorithm, we assume that Ω is a 3D cylindrical-
type domain with a convex planar base S (not necessarily smooth), and let, for
simplicity, Ω = S× (ℓ1, ℓ2). First, let the initial partition of Ω consist of right-angled
prisms face-to-face placed. This presupposes that we are able to construct a con-
forming triangulation of S into right triangles. Such a triangulation has to be done
as follows – we construct some polygon with vertices on the boundary of S (see Fig-
ure 2), and then use one of algorithms presented e.g. in [1, 4, 14, 16] for constructing
a nonobtuse (or even acute) triangulation of this polygon. To this nonobtuse (or
acute) triangulation we apply 2D yellow refinement technique [7], which guarantees
that the next (generated by the yellow refinement) triangulation consists of right
triangles only. The extra vertices, possibly appearing on the boundary of the initial
polygon (marked by the black bullets in the central part of Figure 2), are treated
as shown in the right part of Figure 2 – namely, we project each such vertex on the
boundary of S orthogonally to the edge to which the vertex belongs and connect the
projection point with the end-points of the edge, thus adding to the triangulation
in a conforming manner a few extra right-angled triangles. (The last construction is
always possible due to the assumption of convexity of S.) On the base of this (final,
with all boundary vertices belonging to the boundary of S) right-angled triangula-
tion of S we can, obviously, generate a right-angled face-to-face prismatic partition
of Ω by appropriate vertical and horizontal cuts.


Further, we assume that each prism from the prismatic partition is refined in
3 path-tetrahedra as shown in Figure 3. Obviously, the issue of providing the overall
conformity of the tetrahedral partition obtained in this way appears (cf. [11]) as some
common rectangular faces of adjacent prisms might be not necessarily split in the
same way. Therefore, using the ideas from [11] we shall propose a suitable strategy
how to conformly tetrahedralize our right-angled prismatic partition. Observe first
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Figure 2: Construction of a conforming triangulation of a convex base S, which
consists of right triangles only.


Figure 3: Two possible ways of splitting a right-angle prism in 3 path-tetrahedra
with corresponding orientations for the edges of the base.


Figure 4: Orientation of edges not leading to any tetrahedral splitting of a prism
(left), and two non-allowed orientations (center and right).


that the splitting of a prism in 3 tetrahedra can be, in principle, “suggested” by the
orientation for edges of the base of the prism (cf. Figure 3). However, as Figure 4
(left) demonstrates, the orientation cannot be prescribed arbitrarily – there is no
tetrahedral splitting of the prism for the partition of rectangular faces associated
with certain orientations. Nevertheless, only two special cases for the orientation,
illustrated in Figure 4 (center and right), are not allowed, and we have to avoid them
in practice in order to guarantee the overall conformity of the final tetrahedral mesh.
This can be done, for example, as in [11].
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Figure 5: On orientation of edges of right sub-triangles generated within each nonob-
tuse triangle of the initial triangulation of S – the case of an acute triangle (left) and
the case of a right triangle (center). In the right part of the figure we sketch how we
should orient edges of (extra) right triangles possibly appearing near the boundary
of S.


However, as we want to generate nonobtuse tetrahedra (more precisely – only
path-tetrahedra), among all allowed edge orientations in what follows we shall only
accept those two used in Figure 3 (i.e. two arrows emmanating from the same vertex
should not be orthogonal). Therefore we propose to prescribe the orientations of
edges within each triangle of the initial nonobtuse (or acute) triangulation (cf. Fig-
ure 2 (left)) as presented in Figure 5, where three possible cases are illustrated. It is
clear that the resulting tetrahedral mesh will be then conforming and it will consist
of path-tetrahedra only.


In addition to the nonobtuse tetrahedral mesh, in the neigbourhood of the curved
boundary ∂Ω we get a number of “slice-domains” sketched in Figure 6 (left), each of
which is formed by two neigbouring planes parallel to S (used to generate horizontal
layers for a prismatic mesh of Ω), an “outward” rectangular face of some prism from
the initial prismatic partition (with the face cut by one of its diagonals in the process
of tetrahedralization), and a curved part of ∂Ω.


As the tetrahedral mesh generated by now consists of path-tetrahedra only, we
can use 3D yellow refinement technique from [7] in order to generate the next (finer)
tetrahedral mesh which will be again consisting of path-tetrahedra. However, due to
the presence of a curved boundary we get something like “hanging vertices” (marked
by black bullets in Figure 6 (right)) in the rectangular faces of slice-domains, and in
what follows we explain how to get rid of them in the spirit of Figure 2 (right).


First we project orthogonally these hanging vertices to ∂Ω (cf. Figure 7 (left)) and
connect the projections to the neighbouring vertices and also along ∂Ω (see Figure 7
(right) for details). Further, we mark another pair of vertices to be used in our next
constructions by empty bullets. Now, a cut by a plane parallel to S through those
vertices marked by empty bullets is done (see Figure 8 (left)), which immediately
suggests a natural construction of four new (smaller) prisms inside the slice-domain.
Each of four new prisms is further decomposed (using the given splitting of one of
its rectangular faces due to the neighbouring elements) in 3 path-tetrahedra in the
manner of Figure 8 (right). The resulting tetrahedral mesh is, obviously, conforming
and consists of path-tetrahedra only.
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Figure 6: A slice-domain near the curved boundary ∂Ω (left) and the yellow refine-
ments of two flat triangular faces associated with this slice-domain (right).


Figure 7: A slice-domain with hanging vertices and their projections.


Figure 8: Construction of four new prisms (left) and partition of one of them (right).
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Finally, after the last divisions we are in a position sketched in Figure 6 (left) for
each “outward face” of four newly generated right-angled prisms, so that the whole
algorithm can be repeated.


3. Final remarks


For domains with curved boundaries the following definition (cf. [15, 12]) is useful.


Definition 1 Let Ω be a bounded domain in R3, let F = {Th}h→0 be a set of tetra-
hedral face-to-face partitions of Ωh, where


Ωh =
⋃


K∈Th


K.


The set F is said to be a family of tetrahedral finite element meshes of Ω if for any
x ∈ Ω there exists a sequence {xh}, xh ∈ Ωh, such that xh → x as h → 0, and for
any convergent sequence {xh}, xh ∈ Ωh, there exists x ∈ Ω such that xh → x as
h → 0.


According to the above definition, F is a family of tetrahedral meshes of Ω if
the associated polyhedra Ωh “converge” to Ω. The definition “does not contradict”
the standard definition of a family of (conforming) tetrahedral meshes for polyhedral
domains [5] as we can simply define {xh} = {x} then. It is clear that our algorithm
produces a family of nonobtuse conforming tetrahedral meshes of Ω in the sense of
Definition 1.


Remark 1 Notice that nonobtuse tetrahedral meshes (whose tetrahedral elements
are known to have nonobtuse triangular faces [3]) satisfy the maximum angle condi-
tion [13], which is a popular (sufficient) condition for various convergence proofs in
finite element analysis.


Remark 2 To the author’s knowledge it is still unclear how the usage of isopara-
metric elements can influence the validity of discrete maximum principles.


Remark 3 The main idea of the algorithm can be used even in more general
situations – for more complicated 3D domains. This issue will be considered in the
forthcoming journal paper.
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Abstract


Adaptive finite element method based on multilevel correction scheme is proposed


to solve Steklov eigenvalue problems. In this method, each adaptive step involves


solving associated boundary value problems on the adaptive partitions and small


scale eigenvalue problems on the coarsest partitions. Solving eigenvalue problem in


the finest partition is not required. Hence the efficiency of solving Steklov eigenvalue


problems can be improved to the similar efficiency of the adaptive finite element


method for the associated boundary value problems. The efficiency of the proposed


method is also investigated by a numerical experiment.


1. Introduction


The main goal of this paper is to present a multilevel correction type of adap-
tive finite element method (AFEM) for Steklov eigenvalue problems. These type of
eigenvalue problems arise in a number of applications (see, e.g., [1, 6, 7, 10, 11, 15]).
The analysis of finite element methods for Steklov eigenvalue problems have been
given in [2, 3, 8, 9, 14, 16, 17] and the references cited therein.


In this paper, we are concerned with the following model problem
{


−∆u+ u = 0 in Ω,
∂u
∂ν


= λu on ∂Ω,
(1)


where Ω ⊂ R2 is a bounded polygonal domain and ∂
∂ν


the outward normal derivative
on ∂Ω.


As we know, the AFEM is a very useful and efficient way for solving eigenvalue
problems. Recently, one active topic is to use AFEM to solve the Steklov eigenvalue
problems (see, e.g., [4, 13, 21]). The purpose of this paper is to propose and analyze
a multilevel correction type of AFEM to solve Steklov eigenvalue problems based on
the recent work on multi-level correction method (see [18, 23]). In the new scheme,
the cost of solving eigenvalue problems is almost the same as solving the associated
boundary value problems.
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The corresponding weak form of the problem (1) is:
Find λ ∈ R and u ∈ H1(Ω) such that ‖u‖b = 1 and


a(u, v) = λb(u, v) ∀v ∈ H1(Ω), (2)


where


a(u, v) =


∫


Ω


(
∇u∇v + uv


)
dΩ, (3)


b(u, v) =


∫


∂Ω


uvds, ‖u‖b = b(u, u)
1


2 . (4)


Evidently the bilinear form a(·, ·) is symmetric, continuous and coercive over the
product space H1(Ω)×H1(Ω).


From [5], we know the eigenvalue problem (2) has an eigenvalue sequence {λj} :


0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · , lim
k→∞


λk = ∞,


and the associated eigenfunctions


u1, u2, · · · , uj, · · · ,


where b(ui, uj) = δij . In the sequence {λj}, the λj are repeated according to their
geometric multiplicity.


An outline of the paper goes as follows. In section 2, we introduce finite element
method for the Steklov eigenvalue problem and the corresponding error estimates.
A multilevel correction type of AFEM for Steklov eigenvalue problems is given in
section 3. In section 4, a numerical example is presented to demonstrate the efficiency
of the AFEM and some concluding remarks are given in the last section.


2. Discretization by finite element method and error estimates


In this paper, the letter C (with or without subscripts) denotes a generic posi-
tive constant which may be different at different occurrences. For convenience, the
symbols ., & and ≈ will be used in this paper. That x1 . y1, x2 & y2 and x3 ≈ y3,
mean that x1 ≤ C1y1, x2 ≥ c2y2 and c3x3 ≤ y3 ≤ C3x3 for some constants C1, c2, c3
and C3 that are independent of mesh sizes.


Set V := H1(Ω). Let us define the finite element approximation of (2). First we
generate a shape-regular decomposition of the computing domain Ω ⊂ Rd (d = 2, 3)
into triangles for d = 2 (tetrahedrons for d = 3). The diameter of a cell T ∈ Th is
denoted by hT . The mesh diameter h describes the maximum diameter of all cells
T ∈ Th. Based on the partition Th, we construct the linear finite element space
denoted by Vh ⊂ V . Let Eh denote the set of interior faces (edges or sides) of Th


and E∂Ω the faces on the boundary ∂Ω.
Therefore we can define the approximation of eigenpair (λ, u) of (2) by the finite


element method as:
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Find (λh, uh) ∈ R× Vh such that b(uh, uh) = 1 and


a(uh, vh) = λhb(uh, vh) ∀vh ∈ Vh. (5)


Similarly, we know from [5] the eigenvalue problem (5) has eigenvalues


0 < λ1,h ≤ λ2,h ≤ · · · ≤ λk,h ≤ · · · ≤ λNh,h,


and the corresponding eigenfunctions


u1,h, u2,h, · · · , uk,h, · · · , uNh,h,


where b(ui,h, uj,h) = δij , 1 ≤ i, j ≤ Nh (Nh is the dimension of the finite element
space Vh).


Let Ph be the finite element projection operator of V onto Vh defined by


a(w − Phw, v) = 0 ∀w ∈ V and ∀v ∈ Vh. (6)


Obviously


‖Phw‖1 ≤ ‖w‖1 ∀w ∈ V. (7)


Define ηa(h) as


ηa(h) = sup
f∈H1/2(∂Ω),‖f‖1/2,∂Ω=1


inf
v∈Vh


‖Kf − v‖1, (8)


where the operator K : H−1/2(∂Ω) 7→ V is defined as


a(Kf, v) = b(f, v) ∀f ∈ H−1/2(∂Ω) and ∀v ∈ V. (9)


For the aim of convergence analysis by the finite element method, we introduce the
following regularity result for the boundary value problem (9).


Lemma 2.1. ([9, (4.10)], [7, Proposition 4.4]) For the Steklov type boundary value
problem (9), if f ∈ L2(∂Ω), then Kf ∈ H1+γ/2(Ω) and


‖Kf‖1+γ/2 ≤ C‖f‖b, (10)


where γ = 1 if Ω is convex and γ < π
ω
(with ω being the largest inner angle of Ω).


Furthermore, if f ∈ H
1


2 (∂Ω), we have Kf ∈ H1+γ(Ω) and


‖Kf‖1+γ ≤ C‖f‖1/2,∂Ω. (11)


In order to derive the error estimate of eigenpair approximation in the norm
‖ · ‖−1/2,∂Ω, we need the following error estimate of the finite element projection
operator Ph in the norm ‖ · ‖−1/2,∂Ω.
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Lemma 2.2. ([5, Lemma 3.3 and Lemma 3.4], [3, Proposition 3.1])


ηa(h) = o(1) as h→ 0, (12)


and


‖w − Phw‖−1/2,∂Ω . ηa(h)‖w − Phw‖1 ∀w ∈ V. (13)


Proof. In order to obtain the error estimate in ‖ · ‖−1/2,∂Ω, we chose a function
ϕ ∈ H1/2(∂Ω) such that ‖ϕ‖1/2,∂Ω = 1 and ‖u− Phu‖−1/2,∂Ω = b(u − Phu, ϕ). Then
we have


‖u− Phu‖−1/2,∂Ω = b(ϕ, u− Phu) = a(Kϕ, u− Phu)


= a(Kϕ− ψh, u− Phu) ∀ψh ∈ Vh. (14)


This means we obtain the desired result (13) and the proof is complete.


From the minimum-maximum principle [5], the following upper bound result
holds


λi ≤ λi,h, i = 1, 2, · · · , Nh.


Let M(λi) denote the eigenspace corresponding to the eigenvalue λi which is defined
by


M(λi) =
{
w ∈ V : w is an eigenfunction of (2) corresponding to λi


and ‖w‖b = 1
}
. (15)


Then we define


δh(λi) = sup
w∈M(λi)


inf
v∈Vh


‖w − v‖1. (16)


For the eigenpair approximations by finite element method, there exist the fol-
lowing error estimates.


Proposition 2.1. ([5, P. 699], [3] and [7])
(i) For any eigenfunction approximation ui,h of (5) (i = 1, 2, · · · , Nh), there is an
eigenfunction ui of (2) corresponding to λi such that ‖ui‖b = 1 and


‖ui − ui,h‖1 ≤ Ciδh(λi). (17)


Furthermore,


‖ui − ui,h‖−1/2,∂Ω ≤ Ciηa(h)‖ui − ui,h‖1. (18)


(ii) For each eigenvalue, we have


λi ≤ λi,h ≤ λi + Ciδ
2
h(λi). (19)
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3. Adaptive multilevel correction algorithm for eigenvalue problem


In this section, we present a residual type of a posteriori error estimate and give
the multilevel correction type of AFEM for Steklov eigenvalue problems.


We follow the classic routine to define an a posteriori error estimator for (5)
(see [4, 13]). Let us define the element residual RK(uh)


RK(uh) := uh in T ∈ Th, (20)


and the jump residual JE(uh) by


JE(uh) :=


{
1
2


(
∇u+h · ν+ +∇u−h · ν−


)
:= 1


2
[[∇uh]]E · νE for E ∈ Eh,


∇uh · ν − λhuh for E ∈ E∂Ω,


where E is the common side of elements T+ and T− with outward normals ν+ and ν−,
νE = ν−, and ωE := T+ ∩ T− that share the same edge E.


For the element T ∈ Th, we define the local error indicator ηh(uh, T ) by


ηh(uh, T ) :=


(
h2T‖RT (uh)‖


2
0,T +


∑


E∈Eh,E⊂∂T


hE‖JE(uh)‖
2
0,E


)1/2


, (21)


and the error indicator for a subdomain ω ⊂ Ω by


ηh(uh, ω) :=


(
∑


T∈Th,T⊂w


η2h(uh, T )


)1/2


. (22)


Thus ηh(uh,Ω) denotes the error estimator of uh with respect to Th.
Now we summarize the reliability and the efficiency of the a posterior error esti-


mator (see, e.g., [4, 13]):


Lemma 3.1. ([4, 13]) The error estimator (22) has the reliability


‖u− uh‖1 .
{
ηh(uh,Ω) +


λ + λh
2


‖u− uh‖0,∂Ω
}
. (23)


Furthermore, the error estimator has the efficiency
a) For T ∈ Th, if ET ∩ ∂Ω = ∅


ηh(uh, T ) . ‖u− uh‖
2
1,ωT


, (24)


where ωT contains all the elements that share at least a side with T .
b) For T ∈ Th, if ET ∩ ∂Ω 6= ∅


ηh(uh, T ) .
{
‖u− uh‖1,ωT


+
∑


E∈ET∩∂Ω


hE‖λu− λhuh‖0,E
}
. (25)
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The adaptive procedure consists of loops of the form


Solve → Estimate → Mark → Refine.


Now we state our adaptive finite element method to compute the Steklov eigen-
value problem (5) in the multilevel correction framework.


Adaptive Algorithm C


1. Pick up an initial mesh Th0
with mesh size h0.


2. Construct the finite element space Vh0
and solve the following eigenvalue


problem to get the discrete solution (λh0
, uh0


) ∈ R × Vh0
such that ‖uh0


‖b = 1
and


a(uh0
, vh0


) = λh0
b(uh0


, vh0
) ∀vh0


∈ Vh0
. (26)


3. Let k = 0.
4. Compute the local error indicators ηhk


(uhk
, T ).


5. Construct T̂hk
⊂ Thk


by Marking Strategy E and parameter θ.
6. Refine Thk


to get a new conforming mesh Thk+1
by procedure Refine.


7. Solve the following source problem on Thk+1
for the discrete solution ũhk+1


∈
Vhk+1


:


a(ũhk+1
, vhk+1


) = λhk
b(uhk


, vhk+1
) ∀vhk


∈ Vhk
. (27)


8. Construct the new finite element space Vh0,hk+1
= Vh0


+span{ũhk+1
} and solve


the eigenvalue problem to get the solution (λhk+1
, uhk+1


) ∈ R×Vh0,hk+1
such that


‖uhk+1
‖b = 1 and


a(uhk+1
, vhh0,hk+1


) = λhk+1
b(uhk+1


, vh0,hk+1
) ∀vh0,hk+1


∈ Vh0,hk+1
. (28)


9. Let k = k + 1 and go to Step 4.


Here we use the iterative or recursive bisection (see, e.g., [19, 22]) of elements
with the minimal refinement condition in the procedure REFINE. The Marking


Strategy adopted in Adaptive Algorithm C was introduced by Dörfler [12] and
Morin et al. [20] and can be defined as follows.


Marking Strategy E
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Given a parameter 0 < θ < 1:
1. Construct a minimal subset T̂h from Th by selecting some elements in Th such
that


∑


T∈T̂h


η2h(uh, T ) ≥ θη2h(uh,Ω).


2. Mark all the elements in T̂h.


Now we state some convergence results of this type of AFEM for Steklov eigen-
value problems.


Lemma 3.2. ([18]) Assume the current eigenpair approximation (λhk
, uhk


) ∈ R×Vhk


has the following error estimates


‖u− uhk
‖1 . εhk


(λ), (29)


‖u− uhk
‖−1/2,∂Ω . ηa(h0)‖u− uhk


‖1, (30)


|λ− λhk
| . ε2hk


(λ). (31)


Then after one adaptive step in Adaptive Algorithm C, the resultant approxima-
tion (λhk+1


, uhk+1
) ∈ R× Vhk+1


has the following error estimates


‖u− uhk+1
‖1 . εhk+1


(λ), (32)


‖u− uhk+1
‖−1/2,∂Ω . ηa(h0)‖u− uhk


‖1, (33)


|λ− λhk+1
| . ε2hk+1


(λ), (34)


where εhk+1
(λ) := ηa(h0)εhk


(λ) + ε2hk
(λ) + δhk+1


(λ).


Theorem 3.1. ([18]) Assume ηa(H) & δh1
(λ) ≥ δh2


(λ) ≥ · · · ≥ δhn(λ). The
obtained eigenpair approximation (λhn, uhn) after n adaptive steps in Adaptive


Algorithm C has the error estimate


‖uhn − u‖1 . εhn(λ), (35)


|λhn − λ| . ε2hn
(λ), (36)


where εhn(λ) =
n∑


k=1


ηa(h0)
n−kδhk


(λ).


4. Numerical results


In this section, we give a numerical example to illustrate the efficiency of the
Adaptive Algorithm C for the model Steklov eigenvalue problem. We set the
computing domain as the L-shape one Ω = (−1,−1)× (−1, 1)/[−1, 0]× [−1, 0] and
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Initial mesh
Mesh after 10 iterations


Figure 1: The initial triangulation and the one after 10 adaptive iterations.
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Figure 2: The a posteriori error estimates of eigenfunction approximations by Adap-


tive Algorithm C and standard AFEM.


compare the accuracy with the standard AFEM in [13]. Figure 1 shows the initial
mesh and the mesh after 10 adaptive iterations ofAdaptive Algorithm C. In order
to check the efficiency of Adaptive Algorithm C, we compare the numerical re-
sults of Adaptive Algorithm C with those of standard AFEM. The corresponding
numerical results are shown in Figure 2.


From the results presented in Figure 2, we find the accuracy of Adaptive


Algorithm C is almost the same as the standard AFEM.
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5. Concluding remarks


In this paper, we propose a type of AFEM for Steklov eigenvalue problems based
on multilevel correction scheme. An numerical experiment is provided to demonstrate
the efficiency of the AFEM. The convergence and optimality analysis should be the
topic in our future work.
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Abstract


In this paper, we consider the second-order continuous time Galerkin approxima-
tion of the solution to the initial problem ut+


∫
t


0
β(t−s)Au(s)ds = 0, u(0) = v, t > 0,


where A is an elliptic partial-differential operator and β(t) is positive, nonincreasing
and log-convex on (0,∞) with 0 ≤ β(∞) < β(0+) ≤ ∞. Error estimates are derived
in the norm of L1


t
(0,∞;L2


x
), and some estimates for the first order time derivatives of


the errors are also given.


1. Introduction


We study the discretization in space of the initial-boundary value problem (with
ut = ∂u/∂t),


ut(t) +


∫ t


0


β(t− s)Au(s)ds = 0 in Ω, for t > 0,


u = 0 on ∂Ω, for t > 0,


u(0, ·) = u0 in Ω,


(1.1)


where Ω is a bounded domain in Rd with a smooth boundary ∂Ω, A is a linear
selfadjoint positive definite second-order elliptic partial differential operator. For the
real-valued kernel β we assume that


β ∈ C(0,∞) ∩ L1(0, 1) is positive, nonincreasing, and


log-convex on (0,∞),with 0 ≤ β(∞) < β(0+) ≤ ∞.
(1.2)
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Problems such as (1.1) occur, e.g., in modelling heat transfer in materials with
memory. See, for example, [1, 2], and the references therein. The numerical solu-
tions of the problems of type (1.1) have been studied in extensive literature. See,
for instance, [3-14] for the finite element method, [15, 16, 17] the finite difference
method, [18-21] the mixed finite element method, and [22] the finite volume element
method. The kernel considered in [23, 24] is the positive type, and in, e.g., [25, 26]
weakly singular, and [27, 28] completely monotonic, which is a particular case of (1.2)
(cf. [29, Miller 1968, Lemma 2]). The kernels β(t) with the condition (1.2) has been
introduced in a very ingenious paper [30, Prüss 1987], which shows that β(t) is
completely positive (also, see [31, Clément and Nohel, 1979]), therefore β(t) is of
positive type (cf. [32, Clément and Mitidieri 1988, page 11]). Thus, the kernels
satisfying (1.2) are intermediate between the classical completely monotonic and the
positive type.


In the positive type, McLean and Thomée in [23] studied the finite element
method, and obtained the error bounds for small t, and in [33] presented the
exponential decay for a fully-discrete scheme in which the backward Euler method in
combination with the convolution quadrature was used for the time discretization.
In that paper, the kernel considered was under stronger assumptions and the expo-
nential decay. Yan and Fairweather [24] analyzed the spline collocation method with
the asymptotic error behavior, but with the decreasing exponentially weight. For the
weakly singular kernel, the asymptotic error estimates were analyzed in, e.g., [25, 26].
Choi and MacCamy[25] gave the asymptotic error analysis in L2


t (0,∞;L2
x), the space


of all measurable functions f : [0,+∞) → L2(Ω) such that
∫∞


0
‖f(t)‖2dt <∞, where


‖ ·‖ denotes the norm in L2 = L2(Ω). The results in [26] presented the optimal order
error bounds for nonsmooth data u0 ∈ L2(Ω).


In our earlier papers [27, 28], we considered the completely monotonic convolution
kernel, and studied the backward Euler time discretization [28] and the finite element
methods [27], respectively. The analysis in both of those papers was based on the
methods of Carr and Hannsgen [34, 35] who considered the kernel satisfying


β(t) ∈ C(R+) ∩ L1(0, 1), not constant, and β(t) is nonnegative,


nonincreasing, and convex on R+, 0 < β(0+) ≤ ∞, and β(∞) ≥ 0,
(1.3)


rather than log-convex, and satisfies some additional conditions, for example, −β ′


is convex. Carr and Hannsgen used the spectral theory for selfadjoint operators in
Hilbert spaces and the results on the solutions of the parameter-dependent scalar
Volterra equation,


du(t, λ)


dt
+ λ


∫ t


0


β(t− s)u(s, λ)ds = 0, u(0, λ) = 1. (1.4)


For a general Ω ⊂ Rd we denote below by ‖ · ‖r the norms in the Sobolev spaces
Hr = Hr(Ω) = W r


2 (Ω), such that for any real-valued function v, and any positive
integer r,
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‖v‖r = ‖v‖Hr =



∑


|α|≤ r


‖Dαv‖2






1/2


,


where Dα = (∂/∂ x1)
α1 · · · (∂/∂ xd)


αd, α = (α1, · · · , αd), denotes an arbitrary deriva-


tive with respect to x of order |α| =
d∑


j=1


αj, so that the sum above contains all such


derivatives of order at most r. As usual, we use the notation H1
0 = H1


0(Ω) to stand
for the Sobolev space which consists of the functions v with ∇ v = grad v in L2(Ω)
and vanishing on ∂ Ω.


Under the assumption (1.3), and assuming that −β ′ is convex, they have obtained
the following two more estimates,


∫ ∞


0


‖u(t)‖dt ≤ C‖u0‖, (1.5)


∫ ∞


0


‖u′(t)‖dt ≤ C‖u0‖1, (1.6)


where C is a positive constant independent of u(t, x).
In our earlier work [27], we showed uniform L1


t (0,∞;L2
x) global error estimates


for the linear finite element solutions, provided the initial data are appropriately
smooth. The present paper is a continuation of the investigation in Xu [27], and
the discretization (1.8) whose kernel satisfying (1.2) is considered here. We use
the methods developed in Prüss [30, 36] to show uniform L1


t (0,∞;L2
x) global error


estimates, and relaxes the regularity assumption on the initial data u0.
It is noted that the approach of Prüss [30, 36] is quite different from Carr and


Hannsgen [34, 35]. Prüss [30, 36] gave a new approach to questions such as those in
Carr and Hannsgen [34, 35], avoiding a lot of messy estimates in overlapping cases.
Indeed, by means of Laplace transform methods, operational calculus techniques and
Banach algebra theory Prüss [30, 36] also derived (1.5), (1.6) and in particular the
estimate ∫ ∞


0


‖u′′(t)‖dt ≤ C‖Au0‖, (1.7)


when β(t) satisfies (1.2) and β̇(t) is absolutely continuous on (0, ∞) in case µ =


(β(0+))
1


2 < ∞, and for (1.7) if µ + κ = ∞, −
∫ 1


0
β(t) log t dt < ∞ holds with


κ = −β̇(0+)/2µ; see [30, Theorem 11] and [36, Theorems 3.2 and 3.3].
For our aim, we assume that we are given a family Sh of the piecewise linear


functions on a triangulation of Ω of standard type such that


inf
χ∈Sh


{‖u− χ‖+ h‖u− χ‖1} ≤ Ch2‖u‖2 ∀u ∈ H2(Ω) ∩H1
0(Ω),


where A(·, ·) denotes the bilinear form associated with A, and (·, ·) the inner product
in L2(Ω). Then, the spatially discrete problem is to find uh(t) ∈ Sh for t ≥ 0 such
that
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(uh,t, χ) +


∫ t


0


β(t− s)A(uh(s), χ)ds = 0, for χ ∈ Sh, t > 0,


uh(0) = u0h ≈ u0.
(1.8)


For this problem, it was shown in [27] that with u0h = P0hu0, where P0h is the
L2(Ω)-projection onto Sh, there holds


∫ ∞


0


‖uh(t)− u(t)‖dt ≤ Ch2‖u0‖4, (1.9)


where β(t) satisfies (1.3) and−β̇(t) is convex (c.f. [27, Theorem 1.1 and Remark 2.3]).
Our purpose is to study the discretization (1.8) with the kernel (1.2) and derive


some estimates similar to (1.9).


Theorem 1.1. Suppose β(t) satisfies (1.2) and β̇(t) is absolutely continuous in case
µ <∞. Then, for the solutions of (1.1) and (1.8), with u0h = P0hu0, we have


(i) if µ+ κ = ∞,


∫ ∞


0


‖uh(t)− u(t)‖dt ≤ Ch2‖u0‖2,


(ii) if µ+ κ <∞,


∫ ∞


0


‖uh(t)− u(t)‖dt ≤ Ch2‖u0‖3.
(1.10)


Theorem 1.1 partly recovers and extends results of Xu [27], since logarithmic
convex functions are in particular convex, and relaxes the regularity assumption on
the initial data u0 to a sharper case given by McLean and Thomée [33, Theorem 5.1].


The exact solution of (1.1) can be represented as


u(x, t) =
∞∑


j=1


uλj
(t)(ϕj, u0)ϕj, for t ≥ 0,


where uλj
(t) is the solution of the corresponding scalar problem (1.4) and {λj}


∞
1


and {ϕj}
∞
1 are the eigenvalues (in nondecreasing order) and (L2(Ω) orthonormal)


eigenfunctions of the associated elliptic problem


Aw = λw in Ω, w = 0 on ∂Ω.


The eigenvalues are positive and tend to infinity when j → ∞.
We now introduce the solution operator T of the elliptic problem:


Aw = f in Ω, w = 0 on ∂Ω,


by w = Tf . This operator can be represented by its eigenfunction expansion as


Tf =
∞∑


j=1


λ−1
j (f, ϕj)ϕj ,
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with λj and ϕj as above, and it follows at once that T is a bounded operator from
L2(Ω) into H2(Ω) ∩H1


0 (Ω). In terms of T we may write the problem (1.1) as


Tut(t) +


∫ t


0


β(t− s)u(s)ds = 0, u(0) = u0. (1.11)


Define the discrete elliptic operatorAh : Sh → Sh of A by (Ahψ, χ) = A(ψ, χ) ∀ψ ,
χ ∈ Sh. Related to the definition of the discrete elliptic operator Ah is that of the
solution operator Th : L2(Ω) → Sh of the discrete elliptic problem, namely


A(Thf, χ) = (f, χ) ∀χ ∈ Sh, f ∈ L2(Ω).


Th approximates the exact solution operator T = A−1 : L2(Ω) → H1
0 (Ω)∩H


2(Ω)
in the sense that (see [37, Chapter 2])


‖Thf − Tf‖ ≤ Ch2‖f‖, for f ∈ L2(Ω). (1.12)


The operator T is selfadjoint and positive definite on L2(Ω), and Th is selfad-
joint, positive semidefinite on L2(Ω) and positive definite on Sh. The semidiscrete
problem (1.8) can now be written in the form


Thuh,t(t) +


∫ t


0


β(t− s)uh(s) ds = 0, uh(0) = u0h ∈ Sh, (1.13)


where u0h is a suitable approximation to u0. It is easy to see that the finite-
dimensional problem (1.13) has a unique solution.


We also recall the elliptic regularity property T : L2(Ω) → H1
0 (Ω) ∩ H


2(Ω) and
the associated inequality


‖Tf‖2 ≤ C‖f‖, for f ∈ L2(Ω). (1.14)


We derive the estimates for the first order time derivative of the error as follows.


Theorem 1.2. Assume that β(t) satisfies (1.2) and let β̇(t) be absolutely continuous
on (0, ∞) in case µ < ∞. Then, for the solutions of (1.1) and (1.8), with u0h =
P0hu0, we have ∫ ∞


0


‖Thu
′
h(t)− Tu′(t)‖dt ≤ Ch2‖Au0‖. (1.15)


In the following, â(s) = β̂(s)/s denotes the Laplacian transform of a(t) =∫ t


0
β(τ) dτ . We remark that the error estimate in Theorem 1.1 (ii) requires u0 ∈


Ḣ3(Ω), such that the initial data must satisfy u0 = Au0 = 0 on ∂Ω.
The remainder of this paper is then devoted to the proofs of Theorems 1.1 and 1.2.


Our proofs are based on the transform methods developed in [30, 36], together with
some basic error estimates for the finite element approximations of the elliptic prob-
lems, for example (1.12), and the Paley-Wiener Lemma which is true in any Banach
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algebra L1(R+, B(X)), the space of all measurable functions f : R+ → B(X) such
that


∫∞


0
‖f(t)‖B(X) dt < ∞ with ‖ · ‖B(X) denoting the norm in B(X) which is the


space of all bounded linear operators from a Banach space X to X , and is stated as
follows.


Lemma 1.1. Suppose that K ∈ L1(R+, B(X)) is such that I − K̂(s) is invertible
for each Re s ≥ 0. Then, there is a unique solution L ∈ L1(R+, B(X)) such that
L = K +K ∗ L = K + L ∗K holds in L1(R+, B(X)).


For the proof of this result we refer the readers to Prüss [2, Theorem 0.7].


2. The proof of Theorem 1.1.


This section is organized as follows. First, in Section 2.1. we prove Theo-
rem 1.1. (ii), that is, the regular case µ + κ < ∞. In Section 2.2., we turn to
the singular case, i.e., µ+ κ = ∞.


2.1. The regular case


In this section we assume that µ+ κ <∞ and prove Theorem 1.1 (ii).
It follows from the proof of the regular case of Theorem 11 in [30] that


u(t) = u0(t) + u1(t) = (U0(t) + U1(t)) u0 = U(t) u0,


where
u1(t) = U1(t)u0 = C(µ t) exp (−κ t/µ) u0, (2.1)


with the cosine family C(µt) = cos
(
A


1


2µt
)
. Let w1(t) = C(µt)u0. Then, w1(t)


satisfies


w1,t(t) + µ2


∫ t


0


Aw1(s)ds = 0, w1(0) = u0. (2.2)


Similarly, we can also write


uh(t) = u0h(t) + u1h(t) = (U0h(t) + U1h(t))P0hu0,


where
u1h(t) = U1h(t)P0hu0 = Ch(µt) exp (−κ t/µ)P0hu0, (2.1)h


with Ch(µt) = cos
(
A


1


2


hµt
)
. Now, let w1h(t) = Ch(µt)P0hu0. Then, w1h(t) satisfies


w1h,t(t) + µ2


∫ t


0


Ahw1h(s)ds = 0, w1h(0) = P0hu0. (2.2)h


Hence, by Theorem 2.1. in [23],


‖w1h(t)− w1(t)‖ ≤ Ch2
{
‖u0‖2 +


∫ t


0


‖w1,t(s)‖2 ds


}
, for t > 0, (2.3)
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since the function 1 is a positive-definite kernel. Moreover, we note that


w1,t(t) = − sin
(
A


1


2µt
)
µA


1


2u0,


and


‖w1,t(s)‖2 ≤ C‖u0‖3,


∫ t


0


‖w1,t(s)‖2ds ≤ Ct‖u0‖3,


and


‖w1h(t)− w1(t)‖ ≤ Ch2 {‖u0‖2 + t‖u0‖3} , for t > 0. (2.4)


Thus, we establish that


‖u1h(t)− u1(t)‖ = ‖(w1h(t)− w1(t)) exp (−κ t/µ)‖


≤ Ch2 {‖u0‖2 + t‖u0‖3} exp (−κ t/µ) , for t > 0,
(2.5)


and it suffices to prove that


∫ ∞


0


‖u0h(t)− u0(t)‖dt ≤ Ch2‖u0‖3. (2.6)


To do this, we use the fact that Ĉ(s) = s(s2I +A)−1 and the operational calculus to
get


Û1(s) =
1


µ


(
ĝ−1(s) + ĝ(s)A


)−1
, Re s ≥ 0, (2.7)


where ĝ(s) = µ2(µs+ κ)−1 is the transform of g(t) = µ exp(−κt/µ). Similarly,


Û1h(s) =
1


µ


(
ĝ−1(s) + ĝ(s)Ah


)−1
, Re s ≥ 0. (2.8)


We shall obtain a convolution equation for U0(t) − U0h(t)P0h and use the Paley-
Wiener Lemma to deduce (2.6). In fact, following the argument in [30], we have
that


Û0(s) = R̂1(s) + R̂2(s)Û0(s), (2.9)


where


R̂1(s) = (1 + κβ̂(s))−1R̂(s)Û1(s),


R̂2(s) = (1 + κβ̂(s))−1
(
R̂(s) + κβ̂(s)


)
,


R̂(s) = µ−4
{
µ2 ˆ̈β + 2κµ


ˆ̇
β(s) + κ2β̂(s)


}
Û1(s)− µ−3


{
µ
ˆ̇
β(s) + κβ̂(s)


}
.


Also, we have


Û0h(s) = R̂1h(s) + R̂2h(s)Û0h(s). (2.10)
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This formula for Ûoh(s) is of the same form as (2.9) with Ah instead of A. Subtract-
ing (2.10) from (2.9) we get


Û0(s)− Û0h(s)P0h = (R̂1(s)− R̂1h(s)P0h) + (R̂2(s)− R̂2h(s)P0h)Û0(s)


+R̂2h(s)(P0h − I)Û0(s) + R̂2h(s)
(
Û0(s)− Û0h(s)P0h


)
.


(2.11)
As in [30] we see that R2h(t) ∈ L1(R+, L(Sh)),


∫∞


0
‖R2h(t)‖dt ≤ C and


I − R̂2h(s) =
(
1 + κβ̂(s)


)−1 (
s+ β̂(s)Ah


)
Û1h(s), Re s ≥ 0,


so I − R̂2h(s) is invertible for each s ∈ Π = {s : Re s ≥ 0} and h > 0. Now, by
Lemma 1.1., there exists Q1h(t) ∈ L1(R+, L(Sh)) such that


Q1h(t) = R2h(t) +Q1h ∗R2h(t) = R2h(t) +R2h ∗Q1h(t), t ≥ 0.


Following the proof of the continuous case [2, Theorem 0.7] we can obtain that∫∞


0
‖Q1h(t)‖dt ≤ C. Thus, solving (2.11) for Û0(s)− Û0h(s)P0h, we have that


Û0(s)− Û0h(s)P0h =
(
R̂1(s)− R̂1h(s)P0h


)
+ R̂2h(s)(P0h − I)Û0(s)


+
(
R̂2(s)− R̂2h(s)P0h


)
Û0(s)


+Q̂1h(s)
[(
R̂1(s)− R̂1h(s)P0h


)


+ R̂2h(s)(P0h − I)Û0(s) +
(
R̂2(s)− R̂2h(s)P0h


)
Û0(s)


]
.


(2.12)
Define


l̂(s) = (1 + κβ̂(s))−1µ−4
{
µ2 ˆ̈β + 2κµ


ˆ̇
β(s) + κ2β̂(s)


}
,


m̂(s) = (1 + κβ̂(s))−1 µ−3
{
µ ˆ̇β(s) + κ β̂(s)


}
.


From the proof of [30, Theorem 11] we know that l(t) and m(t) belong to L1(R+).
Since


R̂1(s)− R̂1h(s)P0h = (1 + κβ̂(s))−1
[
R̂(s)Û1(s)− R̂h(s)Û1h(s)P0h


]


= l̂(s)
[(
Û1(s)− Û1h(s)P0h


)
Û1(s) + Û1h(s)P0h(


Û1(s)− Û1h(s)P0h


)]
− m̂(s)


[
Û1(s)− Û1h(s)P0h


]
,


(2.13)


and by (2.1) ∫ ∞


0


‖A
3


2U1(t)u0‖dt ≤ C‖A
3


2u0‖, (2.14)


it follows from (2.13), (2.14), (2.5) and [30, Theorem 11] that
∫ ∞


0


‖ (R1(t)− R1h(t)P0h) u0‖dt ≤ Ch2‖A
3


2u0‖. (2.15)
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Next we write


R̂2(s)− R̂2h(s)P0h = l̂(s)
[
Û1(s)− Û1h(s)P0h


]
, (2.16)


which, together with (2.5), implies


∫ ∞


0


‖ (R2(t)− R2h(t)P0h) u0‖dt ≤ Ch2‖A
3


2u0‖. (2.17)


Following from the proof of Theorem 11 in [30], we can also obtain


∫ ∞


0


‖A
3


2U0(t)u0‖dt ≤ C‖A
3


2u0‖, (2.18)


and
∫ ∞


0


‖(I − P0h)U0(t)u0‖dt ≤ Ch2
∫ ∞


0


‖Au0(t)‖dt ≤ Ch2‖Au0‖. (2.19)


Thus, combining (2.12), (2.13) and (2.16) with the estimates (2.15), (2.17), (2.18)
and (2.19), we can gain our desired estimate (2.6).


2.2. The singular case


In this subsection, we consider the singular case that µ+ κ = ∞. First of all, we
introduce some notations and recall results in Section 3 of [30]. Define h0(s, x) and
h(s, x) for the kernel β(t) (see, for example, page 327 of [30]) as follows:


h0(s, x) = exp
(
−x/â(s)


1


2


)
, h(s, x) =


1


sâ(s)
1


2


h0(s, x). (2.20)


By Theorems 3 and 4 of [30], we can write


ŵ0t(s, x) = h0(s, x), ŵt(s, x) = h(s, x). (2.21)


See Theorem 3 of [30] for the definitions of the functions w0(t, x) and w(t, x). Notice,
in particular, that for each x > 0, w0(t, x) and w(t, x) are nondecreasing, continuous
functions of t ≥ 0, and are absolutely continuous for t 6= x/µ in the case that µ <∞.


Now let ω be a positive number. Define Uω(t) and Rω(t) as those in (7.7) and (7.9)
of [30], respectively, by


Uω(t) =


∫ ∞


0


e−ω τC(τ)wt(t, τ)dτ, Rω(t) =


∫ ∞


0


e−ωτC(τ)w0t(t, τ)dτ.


Similarly, we define Rω,h(t) by


Rω,h(t) =


∫ ∞


0


e−ωτCh(τ)w0t(t, τ)dτ,
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where Ch(τ) = cos
(
A


1


2


h τ
)


is cosine family, defined by the discrete elliptic opera-


tor Ah. We write u(t) = U(t)u0 and uh(t) = Uh(t)P0hu0.
Since Ĉ(s) = s(s2 + A)−1, Re s > 0 (see [38, Proposition 2.6]). Using (2.20)


and (2.21) (see [30, the formula (8.3)]), we have via some calculations as those in [30]
that


Û(s) = h(s)Ûω(s) + ω(1 + h(s))R̂ω(s)Û(s), (2.22)


where


Û(s) = (I + â(s)A)−1/s =
(
sI + β̂(s)A


)−1


,


Ûω(s) = s−1h(s) (I + h2(s)â(s)A)
−1
,


R̂ω(s) = â(s)
1


2h(s) (I + h2(s)â(s)A)
−1
.


Here, as that on page 341 of [30], h(s) denotes


h(s) =
(
1 + ωâ(s)


1


2


)−1


.


Now we multiply (2.22) by ω(â(s))
1


2h(s) to yield


Û(s) = ω(â(s))
1


2h(s)h1(s)R̂ω(s)


+
[
h(s)I + ωâ(s)


1


2h(s)ω(1 + h(s))R̂ω(s)
]
Û(s),


(2.23)


where like that on page 341 of [30] h1(s) is defined as


h1(s) = h(s)/sâ(s)
1


2 .


Also, we have that


Ûh(s) = ω(â(s))
1


2h(s)h1(s)R̂ω, h(s)


+
[
h(s)I + ωâ(s)


1


2h(s)ω(1 + h(s))R̂ω,h(s)
]
Ûh(s).


(2.24)


Set


Ẑ1,h(s) = h1(s)ωâ(s)
1


2h(s)
[
R̂ω,h(s)P0h − R̂ω(s)


]
,


Ẑ2,h(s) = ω(1 + h(s))ωâ(s)
1


2h(s)
[
R̂ω,h(s)P0h − R̂ω(s)


]
Û(s),


Ẑ3, h(s) = h(s)I + ω(1 + h(s))ωâ(s)
1


2h(s)R̂ω,h(s),


Ẑ4,h(s) = ω(1 + h(s))ωâ(s)
1


2h(s)R̂ω,h(s)(I − P0h)Û(s).


Subtracting (2.23) from (2.24) we can obtain


Ûh(s)P0h − Û(s) = Ẑ1,h(s) + Ẑ2,h(s) + Ẑ4,h(s) + Ẑ3,h(s)
(
Ûh(s)P0h − Û(s)


)
. (2.25)
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Now, as that shown on page 341 of [30], we have


Z3,h(t) ∈ L1(R+L(Sh)),


∫ ∞


0


‖Z3,h(t)‖dt ≤ C <∞,


and


I − Ẑ3, h(s) =
h(s)â(s)


1


2ωh2(s)


I + h2(s)â(s)Ah
(I + â(s)Ah)


= ωh2(s)(I + â(s)Ah)R̂ω,h(s), Re s ≥ 0.


(2.26)


Thus, I − Ẑ3,h(s) is invertible for Re s ≥ 0 and h > 0. Lemma 1.1 indicates that
there is a Y3,h(t) ∈ L1(R+, L(Sh)) such that


Y3,h(t) = Z3,h(t) + Y3,h ∗ Z3,h(t) = Z3,h(t) + Z3,h ∗ Y3,h(t), t ≥ 0, (2.27)


and we can follow the proof of [2, Theorem 0.7] to obtain
∫ ∞


0


‖Y3,h(t)‖dt ≤ C <∞.


Therefore, solving (2.25) for Ûh(s)P0h − Û(s), we obtain


Ûh(s)P0h − Û(s) = Ẑ1,h(s) + Ẑ2,h(s) + Ẑ4, h(s)


+Ŷ3,h(s)
(
Ẑ1,h(s) + Ẑ2,h(s) + Ẑ4,h(s)


)
.


(2.28)


Also, we have


Ẑ1,h(s) = ωh1(s)â(s)
1


2h(s)


[
1


â(s)
1


2 h(s)


(
P0h


q̂(s)I+Ah
− 1


q̂(s)I+A


)]


= ωh1(s)
[


Th


I+q̂(s)Th
− T


I+q̂(s)T


]


= ωh1(s)
[(


Th


I+q̂(s)Th
(P0h − I)A−1


)
A


+ Th


I+q̂(s)Th
(T − Th)A+


(
T 2


h


I+q̂(s)Th
− T 2


I+q̂(s)T


)
A
]


= ωh1(s)
{
â(s)


1


2h(s)R̂ω,h(s)P0h [(P0h − I)A−1 + 2(T − Th)]A


+ â(s)
1


2h(s)(Th − T )R̂ω(s)A+ R̂ω,h(s)P0h(T − Th)R̂ω(s)A
}
,


(2.29)


where q̂(s) = 1
â(s)h2(s)


. It follows from (1.12) and the proof shown on pages 341–342


in [30] that ∫ ∞


0


‖Z1,h(t)u0‖dt ≤ Ch2‖Au0‖. (2.30)


Similarly, we can obtain
∫ ∞


0


‖Zi,h(t)u0‖dt ≤ Ch2
∫ ∞


0


‖AU(t)u0‖dt ≤ Ch2‖Au0‖, i = 2, 4, (2.31)
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where the second inequality of (2.31) follows from Theorem 11 of [30]. Combining
(2.29)–(2.31) with (2.28) yields


∫ ∞


0


‖uh(t)− u(t)‖dt ≤ Ch2‖Au0‖, (2.32)


and thus Theorem 1 (i) is proved.


3. The proof of Theorem 1.2.


First of all, we consider the regular case that µ + κ < ∞, and then we discuss
the singular case that µ+ κ = ∞.


3.1. The regular case


Define


V1(t) = µĊ(µt) exp(κt/µ),


and write


V (t) = V0(t) + V1(t),


where u′(t) = V (t)u0. Note that ˆ̇C(s) = −A(s2I + A)−1. So, we have


V̂1(s) =
ˆ̇C(ĝ(s)−1) = −A(ĝ−2(s)I + A)−1, (3.1)


where, as before, ĝ(s) = µ2(µs+ κ)−1. We multiply (3.1) with T to get


T V̂1(s) =
−ĝ2(s)T


ĝ2(s)I + T
. (3.2)


Similarly, with u0h = P0hu0 and u′h(t) = Vh(t)P0hu0, we have Vh(t) = V0h(t) + V1h(t)


and V1h(t) = µĊh(µt) exp(−κt/µ), where Ċh(µt) = −µ sin(µtA
1


2


h )A
1


2


h , and


ThV̂1h(s) =
−ĝ2(s)Th
ĝ2(s)I + Th


. (3.3)


Subtracting (3.2) from (3.3) and doing some simple computations, we can obtain
that


ThV̂1h(s)P0h − T V̂1(s) =
(
V̂1h(s)ThP0hT − V̂1(s)T


2
)
A


=
[
V̂1h(s)Th(P0h − I)T + V̂1h(s)Th(T − Th) + V̂1h(s)T


2
h − V̂1(s)T


2
]
A


=
[
V̂1h(s)Th(P0h − I)T + V̂1h(s)Th(T − Th)


]
A


+
[
V̂1h(s)Th(Th − T ) + (Th − T )V̂1(s)T + µÛ1h(s)(Th − T )µÛ1(s)


]
A.


(3.4)
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By means of the spectral theorems and the definitions in [30, 36], we can also obtain
that ∫ ∞


0


‖V1h(t)Th‖dt ≤ C <∞,


∫ ∞


0


‖U1h(t)‖dt ≤ C < ∞,
∫ ∞


0


‖V1(t)T‖dt ≤ C <∞,


∫ ∞


0


‖U1(t)‖dt ≤ C <∞.
(3.5)


In addition, from (1.13), (3.4), and (3.5) we know that
∫ ∞


0


‖ (V1h(t)ThP0h − V1(t)T )u0‖dt ≤ Ch2‖Au0‖. (3.6)


Thus, to complete the proof of Theorem 1.2 in the regular case, it suffices to show
that ∫ ∞


0


‖ (V0hThP0h − V0(t)T ) u0‖dt ≤ Ch2‖Au0‖. (3.7)


Combining (2.7) with (3.2) leads to


A−1V̂1(s) = −µĝ(s)Û1(s). (3.8)


Since V̂ (s) = β̂(s)(−A)
(
sI + β̂(s)A


)−1


, we have


V̂0(s) =
(
V̂ −1
1 (s)− V̂ −1(s)


)
V̂1(s)V̂ (s) = −


{
ĝ−2(s)− s/β̂(s)


}
A−1V̂1(s)V̂ (s),


which, together with some manipulations, yields


V̂0(s)T = R̂4(s)T + R̂3(s)V̂0(s)T, (3.9)


where
R̂3(s) = κ2µ−3ĝ(s)Û1(s) + µr̂0(s)Û1(s),


R̂4(s) = R̂3(s)V̂1(s),


and r0(t) is the scalar function whose transform is


r̂0(s) = ĝ(s)
{
ĝ−2(s)− s/β̂(s)− κ2/µ4


}
.


Moreover, from Lemma 10.1 in [2] we know that


r0(t) ∈ L1(R+) (3.10)


(see [39, Hannsgen and Wheeler (1990), page 506, the proof of (3.11)]).
Similar to the arguments of Theorem 1.1 we can also get that


V̂0h(s)ThP0h − V̂0(s)T = R̂4h(s)ThP0h − R̂4(s)T


+
(
R̂3h(s)P0h − R̂3(s)


)
V̂0(s)T + R̂3h(s)


(
V̂0h(s)ThP0h − V̂0(s)T


)


+R̂3h(s) (I − P0h) V̂0(s)T.


(3.11)
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We use (3.10) and (2.1)h to gain


R3h(t) ∈ L1(R+, L(Sh)) and


∫ ∞


0


‖R3h(t)‖dt ≤ C <∞.


To see that I−R̂3h(s) is invertible for s ∈ Π = {s : Re s ≥ 0} and h > 0, we note that
V̂h(s)− V̂1h(s) = V̂0h(s) = R̂3h(s)V̂h(s). So, we have that I − R̂3h(s) = V̂1h(s)V̂


−1
h (s),


which clearly indicates that I − R̂3h(s) is invertible for s ∈ Π = {s : Re s ≥ 0} and
h > 0.


According to Lemma 1.1, there exists Q2h(t) ∈ L1(R+, L(Sh)) such that


Q2h(t) = R3h(t) +Q2h ∗R3h(t) for t ≥ 0, and


∫ ∞


0


‖Q2h(t)‖dt ≤ C <∞.


Therefore, solving (3.11) for V̂0h(s)ThP0h − V̂0(s)T , we obtain


V̂0h(s)ThP0h − V̂0(s)T = R̂3h(s) (I − P0h) V̂0(s)T + Ẑ4h(s) + Ẑ5h(s)


+Q̂2h(s)
[
R̂3h(s) (I − P0h) V̂0(s)T + Ẑ4h(s) + Ẑ5h(s)


]
,


(3.12)


where
Ẑ4h(s) = R̂4h(s)ThP0h − R̂4(s)T,


Ẑ5h(s) =
(
R̂3h(s)P0h − R3(s)


)
V̂0(s)T.


Next we show that ∫ ∞


0


‖Z4h(t)u0‖dt ≤ Ch2‖Au0‖, (3.13)


and ∫ ∞


0


‖Z5h(t)u0‖dt ≤ Ch2‖Au0‖. (3.14)


Then, (3.7) follows from (3.12), (3.13), and (3.14). So, we reduce (3.7) to (3.13)
and (3.14).


Write


Ẑ5h(s)u0 = κ2µ−3ĝ(s)
[
Û1h(s)P0h − Û1(s)


]
V̂0(s)Tu0


+µr̂0(s)
[
Û1h(s)P0h − Û1(s)


]
V̂0(s)Tu0.


We use (2.5), (3.10), and Theorem 3.2 in [36] to get


∫ ∞


0


‖Z5h(t)u0‖ dt ≤ Ch2
∫ ∞


0


∥∥∥A 3


2V0(t)Tu0


∥∥∥ dt


= Ch2
∫ ∞


0


∥∥∥
(
V0(t)T


1


2


)
Au0


∥∥∥ dt ≤ Ch2‖Au0‖.
(3.15)
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Thus, (3.14) is established. Furthermore, from (3.9) we can derive


Ẑ4h(s)u0 =
[
R̂3h(s)V̂1h(s)ThP0h − R̂3(s)V̂1(s)T


]
u0


=
(
R̂3h(s)P0h − R3(s)


)
V̂1(s)Tu0


+R̂3h(s)P0h


(
V̂1h(s)ThP0h − V̂1(s)T


)
u0.


So, (3.6) and (3.15) with V1(t) instead of V0(t) imply (3.13). This, in turn, gives
us (3.7), which completes the proof of Theorem 1.2 in the regular case.


3.2. The singular case


Let µ+κ = ∞. As in the proof of Theorem 3.1 of [39] we define Vω(t) as follows:


Vω(t) =


∫ ∞


0


e−ωτ Ċ(τ)w0t(t, τ)dτ.


Similarly, like the derivation of (3.9), we can write


V̂ − V̂ω =
(
V̂ −1
ω − V̂ −1


)
V̂ωV̂ .


It follows from (2.20), (2.21), and ˆ̇C(s) = −A(s2I + A)−1 for Re s > 0 that


V̂ − V̂ω = −



ω2 + 2ω


(
s


β̂(s)


) 1


2



A−1V̂ωV̂ .


Since


−A−1V̂ω =
(
ω + â(s)−


1


2


)−1


R̂ω,


it is easy to verify that


V̂ (s)T = V̂ω(s)T + Ŝ2(s)V̂ (s)T, (3.16)


where
Ŝ2(s) = ω(1 + h(s))R̂ω(s).


The proof of the remainder part is almost identical to that of (3.7). We only need
to derive the following two more estimates,


∫ ∞


0


‖ (RωhP0h − Rω) ∗ V (t)Tu0‖dt ≤ Ch2‖Au0‖, (3.17)


and ∫ ∞


0


‖ (Vωh(t)ThP0h − Vω(t)T )u0‖dt ≤ Ch2‖Au0‖. (3.18)
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To verify the claim (3.17), we note that


∫ ∞


0


‖ (Rωh(t)P0h − Rω(t)) v‖dt


=


∫ ∞


0


∥∥∥∥
∫ ∞


0


e−ωτ (Ch(τ)P0h − C(τ))w0t(t, τ)vdτ


∥∥∥∥ dt


≤ C


∫ ∞


0


∫ ∞


0


e−ωτw0t(t, τ)τh
2
∥∥∥A 3


2v
∥∥∥ dτdt ≤ Ch2


∥∥∥A 3


2v
∥∥∥ ,


(3.19)


where we have used (2.4) and Theorem 3 of [30]. Thus, combining (3.19) and (1.6)
leads to (3.17).


Next, our discussions turn to (3.18). From the derivation of (3.16) we know that


V̂ω(s) = −Aâ(s)
1


2h(s)R̂ω(s) = −Aâ(s)h(s)2
T


â(s)h(s)2I + T
,


from which we claim that


V̂ωh(s)ThP0h − V̂ω(s)T


=
[
V̂ωh(s)Th(P0h − I)A−1 + V̂ωh(s)Th(T − Th)


]
A


+
[
V̂ωh(s)Th(T − Th) + (T − Th)V̂ω(s)T + R̂ωh(s)(Th − T )R̂ω(s)


]
A.


(3.20)


We recall from the proofs of Theorem 11 in [30] and Theorem 3.2 in [36] that


∫ ∞


0


‖Vω(t)T‖dt ≤ C <∞,


∫ ∞


0


‖Vωh(t)Th‖dt ≤ C <∞,
∫ ∞


0


‖Rω(t)‖dt ≤ C <∞,


∫ ∞


0


‖Rωh(t)‖dt ≤ C <∞.
(3.21)


These estimates, together with (1.12) and (3.20), yield (3.18). And thus, we complete
the proof of Theorem 1.2.
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Havasi, Á. . . . . . . . . . . . . . . . . 99


He, L. . . . . . . . . . . . . . . . . . . . . . 62
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Žeńı̌sek, A. . . . . . . . . . . . . . . . 309


Zhang, S. . . . . . 1, 14, 144, 317


Zhang, T. . . . . . . . . . . . . . . . . 317


Zhou, A. . . . . . . . . . . . . . . . . . . 62


Zlatev, Z. . . . . . . . . . . . . . . . . . 99


332








LIST OF PUBLICATIONS OF MICHAL KŘÍŽEK
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[A4] M. Kř́ıžek, P. Neittaanmäki, R. Stenberg (eds.), Finite element methods: su-
perconvergence, postprocessing, and a posteriori estimates, Proc. Conf., Univ. of
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[B7] M. Kř́ıžek, Q. Lin, Y. Huang, A nodal superconvergence arising from combination
of linear and bilinear elements, J. Systems Sci. Math. Sci. 1 (1988), 191–197. Zbl
0726.65122, MR 91f:65170.
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[B42] J. Brandts, M. Kř́ıžek, Gradient superconvergence on uniform simplicial parti-
tions of polytopes, IMA J. Numer. Anal. 23 (2003), 489–505. Zbl 1042.65081, MR
2004i:65105.
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[C16] M. Kř́ıžek, On approximation of the Neumann problem by the penalty method, Appl.
Math. 38 (1993), 459–469. Zbl 0795.65075, MR 94i:65116.


xiii
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dvojstvennych principov (in Russian), Variacionno-raznostnye metody v zadačach
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T. Vejchodský), Math. Inst. Prague, 2006, 149–155.
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300 pp.
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[H1] M. Kř́ıžek, Výpočet hydraulického odporu vinut́ı olejových transformátor̊u, MÚ
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teplotńıho pole v magnetickém obvodu transformátoru, MÚ ČSAV Praha, 1983,
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MÚ ČSAV, Praha, 1979, 99 pp.
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mat.-fyz. 75 (1998), 101–107.
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[K28] M. Kř́ıžek, Princip metody konečných prvk̊u, Matematika a fyzika na vysokých
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197–206.
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[K75] A. Šolcová, M. Kř́ıžek, Procházky Prahou matematickou, fyzikálńı a astronomickou
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[K129] M. Kř́ıžek, Z. Zhang, Reliability of numerical calculations (in Chinese and English),
submitted to Math. Culture 3 (2012), 1–5.
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Abstract


In this work, artificial compressibility method is used to solve steady and unsteady


flows of viscous incompressible fluid. The method is based on implicit higher order


upwind discretization of Navier-Stokes equations. The extension for unsteady simu-


lation is considered by increasing artificial compressibility parameter or by using dual


time stepping. The methods are tested on laminar flow around circular cylinder and


used to simulate turbulent unsteady flows by URANS approach. The simulated cases


are synthetic jet and flow in a branched channel.


1. Introduction


The work deals with numerical solution of incompressible viscous (laminar and
turbulent) unsteady flows. The solved cases include flows with self-induced un-
steadiness – laminar flow around circular cylinder, turbulent flow through branched
channel, and unsteadiness caused by periodic forcing – synthetic free jet.


The algorithm used in this work is based on artificial compressibility method.
The idea, proposed by Chorin [2], is to complete continuity equation by a pressure
time derivative 1


β2


∂p
∂t


and then use some numerical scheme for compressible flow
computation. With steady boundary conditions and time dependent method steady
solution may be achieved for t → ∞. An extension for unsteady simulation is
achieved by introducing dual time and using implicit discretization for both physical
and artificial time.


2. Mathematical model


The governing equations are Navier-Stokes (NS) equations for incompressible
fluid (density ρ = const) in Cartesian coordinates


163







∂ui


∂xi


= 0


∂ui


∂t
+


∂uiuj


∂xj


= −
1


ρ


∂p


∂xi


+ ν
∂


∂xj


(


∂ui


∂xj


+
∂uj


∂xi


)


(1)


where ui is velocity vector, p static pressure and ν kinematic viscosity of the fluid.
A convenient time marching algorithm for NS equations for incompressible flow can
be achieved by artificial compressibility method. In its simplest form, only the
continuity equation is modified by pressure time derivative


1


β2


∂(p/ρ)


∂t
+


∂ui


∂xi
= 0, (2)


where β is positive parameter. The inviscid part of modified NS equations is now
fully hyperbolic and can be solved by standard methods for hyperbolic conservation
laws. The system including continuity equation and two momentum equations in 3D
can be written as


Γ
∂W


∂t
+Rez(W ) = 0, Γ = diag[β−2, 1, 1, 1], W = col[p/ρ, u1, u2, u3], (3)


(x1, x2, x3) ∈ D, t ∈ (0,∞), Rez(W ) =
∂(uiuj)


∂xj
+


∂(p/ρ)


∂xi
− ν


∂


∂xj


(


∂ui


∂xj
+


∂uj


∂xi


)


whereW is vector of unknown pressure and velocity components, and steady residual
Rez(W ) is zero for steady solution. However, the divergence free velocity field is not
achieved before steady state at which ∂p/∂t = 0. In unsteady case, the velocity
divergence error may have negligible impact on relevant flow parameters if the β2 is
large enough.


Other possibility of dealing with unsteadiness is to introduce artificial (dual,
iterative) time τ and apply the artificial compressibility method in this time:


Γ
∂W


∂τ
+Rezuns(W ) = 0, Rezuns(W ) = R


∂W


∂t
+Rez(W ), (4)


R = diag[0, 1, 1, 1], (x1, x2, x3) ∈ D, t ∈ (tn, tn+1), τ ∈ (0,∞)


where Rezuns(W ) is unsteady residual. The steady state in τ now should be achieved
at each physical time level t.


2.1. Turbulence modelling


In order to simulate turbulent flows the Reynolds averaging procedure is used
leading to the Reynolds-averaged Navier-Stokes (RANS) system of equations. For
unsteady simulation it formally becomes URANS (unsteady RANS) approach. The
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physical meaning is maintained if the simulated unsteadiness is far enough from
turbulent unsteadiness with time and length scale respectively


τt ≈
k


ǫ
, lt ≈


k3/2


ǫ
, (5)


where k is turbulent energy and ǫ turbulent dissipation rate. For unsteady flow with
periodic forcing the averaging is phase averaging. The averaged equations formally
differ from Navier-Stokes equations by additional momentum transport expressed by
the Reynolds stress tensor. In this work, the Reynolds stress is modelled using Shear
Stress Transport (SST) model [5] and an explicit algebraic Reynolds stress model
(EARSM) [9, 3]. In the SST model, the extended eddy-viscosity assumption is used
to express the Reynolds stress, while in EARSM a constitutive relation contains
terms up to fourth order in terms of velocity gradient. Both turbulence models
require solving a system of k-ω equations for turbulent scales (ω ∼ ǫ/k).


2.2. Numerical methods


The stability limitation for an explicit artificial compressibility method requires
∆t ∼ L/β, where L is minimum step size of a numerical grid. In view of the necessity
to increase β and of application to simulation of viscous flows, an implicit three-layer
scheme of second order accuracy is used. For single time method, the scheme reads


Γ
3W n+1


i,j,k − 4W n
i,j,k +W n−1


i,j,k


2∆t
+Rez(W )n+1


i,j,k = 0. (6)


For dual time method, the scheme is backward Euler in artificial time (superscript µ)


Γ
W µ+1


i,j,k −W µ
i,j,k


∆τ
+R


3W µ+1


i,j,k − 4W n
i,j,k +W n−1


i,j,k


2∆t
+Rez(W )µ+1


i,j,k = 0. (7)


The steady residuals are computed by a cell-centered finite volume method with
quadrilateral or hexahedral finite volumes in 2D and 3D, respectively. The dis-
cretization of convective terms uses third order accurate van Leer upwind interpola-
tion. Pressure gradient is computed by central approximation. The viscous terms are
approximated using 2nd order central scheme, with cell face derivatives computed
on a dual grid of quadrilaterals/ octahedrons in 2D/ 3D constructed over each face
of primary grid using vertices of the face and centres of two adjacent finite volumes.


3. Numerical results


3.1. Laminar flow around a cylinder


In this section, 2D laminar flow around the circular cylinder is considered. The
first test case is circular cylinder of diameterD placed excentrically inside channel [6].
The Reynolds number Re = UD/ν = 100, where U is bulk inlet velocity. At this
Reynolds number, unsteady periodic flow evolves due to the vortex shedding on
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reference [6] β = U β = 10U dual time (β = U)
max(cD) 3.10–3.28 3.39 3.27 3.10
max(cL) 0.99–1.01 0.77 1.09 0.98
St = Df/U 0.295–0.305 0.196 0.288 0.294


Table 1: Drag, lift and the Strouhal number for flow around cylinder in channel.


Re 47 50 60 80 100 120 140
St 0.1336 0.1362 0.1438 0.1547 0.1642 0.1733 0.1821
CD (mean) 1.55 1.53 1.50 1.43 1.36 1.34 1.34
CL (ampl.) 0.15 0.18 0.22 0.22 0.23 0.34 0.45


Table 2: Strouhal number, drag and lift coefficients for cylinder in free space.


the cylinder. The computed force on the cylinder (FD, FL) is expressed by drag
coefficient CD = 2FD/(ρU


2D) and lift coefficient CL = 2FL/(ρU
2D) are compared


with reference compilation [6] as well as the Strouhal number St = D/(TU), where
T is period of the force, see Tab. 1. For single time method with β = U , the Strouhal
number is too small. In the case of β = 10U , the results improve. However this
value of β was about the maximum for an acceptable time step (∆t = 0.02D/U).
The results of dual time stepping method using β = U,∆t = 0.06D/U are clearly
best, however at the cost of higher CPU time. The time evolution of drag and lift
for the mentioned cases are shown in Figs.1, 2 and 3.


The evolution of L2-norm of steady and unsteady residual is shown
in Fig. 4 (Re = 100). The convergence of pressure is worst, which is typical for
this form of artificial compressibility method. The behaviour does not change for
β =


√
0.1 or


√
10 either.


Next we consider cylinder in a free stream of velocity U . The cylinder is placed
in the middle of the computational domain of size 40D(streamwise) × 100D. The
results are achieved with dual time method with β = U,∆t = 0.06D/U .


Figure 5 shows dependency of the Strouhal number (frequency) of vortex shed-
ding for different Reynolds numbers, in comparison with empirical corelation St =
0.266− 1.016/


√
Re [10]. The critical Reynolds number where vortex shedding starts


is recently measured at Re = 47.5± 0.7 [10]. In our computation, the flow is steady
for Re = 30, unsteady but non-periodic for Re = 40 and periodic at Re = 47 (shown
in Fig. 5). However for lower Re the computed shedding frequency is higher than the
empirical correlation. Another computational attempt [8], probably on finer grid,
shows good agreement with experiment however predicted much higher critical Re.
The results are summarized in Tab. 2. An example of flow-field (Re = 100) is shown
in Fig. 6.


166







-0.05


 0


 0.05


 0.1


 0.15


 0.2


 0.25


 0.3


 0.35


 0.4


 100  105  110  115  120


C
D


 -
 3


,  
C


L 
/ 3


0


t D / U


drag CD - 3


lift CL / 30
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der, β = U .
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Figure 3: Laminar flow around cylinder, dual time stepping. Left: evolution from
initial state, right: zoom of periodic flow.
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Figure 4: Laminar flow around cylinder, convergence history for dual time method.
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tn+1.
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Figure 6: Isolines of velocity around cylinder in free space. Above: instantaneous
velocity, below: time averaged velocity.


3.2. Turbulent 3D synthetic free jet flow


In this part, we consider the synthetic jet generated by periodical inflow/outflow
with zero mean value in the circular nozzle [7]. The Reynolds number from nozzle
diameter and velocity amplitude Re = UmaxD/ν = 13 325. Turbulence is modelled
by the SST model. We used dual time stepping method with β = Umax and ∆t =
T/72 with forcing period T = 1/(75Hz). The computed instantaneous velocity on
jet axis is compared with measured [7] phase averaged velocity in Fig. 9. For larger
x/D, the flowfield corresponds to steady free jet. Next Fig. 10 shows time averaged
velocity on jet axis. The computational results achieved using Fluent code with
axisymmetrical formulation in [7] are also shown. The velocity on the axis by Fluent
decreases too fast, which suggests higher spreading rate than in experiment. The
time averaged velocity profiles exhibit self-similarity already in the unsteady region.
The computational results, Fig. 11, have this feature except for small distance to the
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Figure 7: Solution domain for synthetic
jet.


Figure 8: Solution domain for channel
junction.
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Figure 9: Phase averaged velocity on jet axis. Left: computation, right: measure-
ment.
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nozzle, where an approximate boundary condition again plays a role. In this figure,
the r0.5 denotes the radial distance from jet axis, where the velocity reaches half of
the axial velocity. Velocity profiles moreover agree well with empirical correlation
U/Uax = exp[− ln(2)(r/r0.5)


2] according to [1].


3.3. Turbulent 3D flow in channel with branch


Here, turbulent flow in a channel with perpendicular branch is considered. In
ref. [4], the channel had 1 inlet in the main channel and 2 outlets: from main channel
and from the branch. In the following the case with inlet through branch and 2 outlets
from the main channel is presented. The solution domain as well as finite volume
grid is same as in [4]. The Reynolds number computed from inlet diameter and bulk
velocity is Re = 140 000. Different distribution of outflow into the outlets can be
prescribed. The target flow rates are achieved using 2 conditions for pressure in the
outlets:


α) “do-nothing”-like condition


µ
∂u


∂n
− p = pref (8)


where u is velocity component normal to the outlet plane, µ dynamic viscosity,
p pressure and pref an arbitrary constant


β) correction for target flow rate Ubt


∂p


∂n
= −


Ubt − Ub


∆t
(9)


where Ub is flow rate at time tn and ∆t = tn+1 − tn


The condition α can be used in 1 outlet only and needs to be combined with e.g. con-
dition β. The condition β can be used in both outlets. Any of these 3 combinations
worked comparably well in the simulated cases.


The distribution of outflow is 20:80, total flow-rate 5.5 l/s. In this configuration
the simulation became unsteady and is interpreted in URANS sense. The Fig. 12
shows isolines of instantaneous and time averaged velocity near the junction. They
seem quite similar. However, the next Fig. 13 shows that the resolved turbulent
energy is comparable in magnitude to the turbulent energy from the turbulence
model (color scale is same in both figures). The resolved unsteadiness is confined
mainly to outlet channels. The comparison with PIV measurement is shown in
Fig. 14 in terms of isolines of velocity.


4. Conclusions


In this work an artificial compressibility implicit upwind finite-volume method
has been applied to unsteady flows of incompressible newtonian fluid. The computed
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Figure 12: Isolines of instantaneous (left) and time averaged (right) velocity in the
center-plane of T-channel.


Figure 13: Isolines of modelled turbulent energy k (left) and resolved turbulent
energy (right) in the center-plane of T-channel.


Length[m/s]: 0.5 1 1.5 2 2.5 3 3.5 4 4.5
VEL: 0.2 0.4 0.5 0.7 0.9 1.1 1.2 1.4 1.6


Figure 14: Velocity in the channel junction – experiment (left) and simulation (right).


cases included self-induced as well as forced unsteadiness. In single time method,
the implicit discretization is necessary to overcome stability restriction when increas-
ing artificial compressibility parameter. Although the computed lift force and the
Strouhal number are satisfactory, the drag force is mis-predicted. The dual time
stepping method is found more reliable and of sufficient accuracy also for studied 3D
turbulent flows. The downside is that it is more CPU time consuming than single
time method.
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Abstract


The finite element method is applied to a convection-diffusion problem posed on the
unite square using a tensor product mesh and bilinear elements. The usual proofs that
establish superconvergence for this setting involve a rather high regularity of the exact
solution - typically u ∈ H


3(Ω), which in many cases cannot be taken for granted. In this
paper we derive superconvergence results where the right hand side of our a priori esti-
mate no longer depends on the H


3 norm but merely requires finiteness of some weaker
functional measuring the regularity. Moreover, we consider the streamline diffusion sta-
bilization method and how superconvergence is affected by the regularity of the solution.
Finally, numerical experiments for both discretizations support and illustrate the theoreti-
cal results.


1. Introduction


We consider the scalar convection-diffusion boundary value problem


Lu := −ε∆u+ b · ∇u+ cu = f in Ω = (0, 1)2, (1)


u = 0 on ∂Ω.


Here, 0 < ε ≪ 1 is a small parameter. We assume f ∈ L2(Ω), c ∈ L∞(Ω),b ∈ (W 1
∞(Ω))2


and


c− 1


2
divb ≥ ω > 0. (2)


As a discretization for (1) we use the finite element method. Introducing the Hilbert
space


H1
0 (Ω) := {v ∈ H1(Ω) | v|∂Ω = 0}


the variational formulation of the given boundary value problem reads:
Find u ∈ H1


0 (Ω) such that


a(u, v) := ε


∫


Ω


∇u · ∇v dx +


∫


Ω


b · ∇u v dx +


∫


Ω


c uv dx =


∫


Ω


fv dx, for all v ∈ H1
0 (Ω).


(3)
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The natural norm in which one shows coercivity of the bilinear form is the ε-weighted
H1 norm


‖u‖21,ε := |u|21,ε + ‖u‖20, with |u|21,ε := ε|u|21.
Moreover, on subdomains D ⊆ Ω we will work with fractional order Sobolev spaces
Hs(D) (s ∈ R+), the elements of which are finite in the corresponding norm


‖u‖2m+σ,D := ‖u‖2m,D + |u|2σ,D with


|u|2σ,D :=
∑


|α|=m


∫∫


D×D


|u(α)(x)− u(α)(y)|2
|x− y|2+2σ


dxdy, m ∈ N, σ ∈ (0, 1). (4)


Furthermore, for D = Ω we drop the set index Ω in the notation of (semi-)norms.
In this paper we will discretize (3) with bilinear finite elements on tensor product


meshes Th with respective mesh size hx and hy. The parameter h is going to denote the
maximal element diameter of the current mesh.


From standard finite element analysis it is well known that the error can be bounded
by


‖u− uh‖1,ε ≤ Ch |u|2,Ω.
Also, it is a known phenomenon that superconvergence is achieved for the difference of
the interpolant uI and the FE-solution uh, measured in the same norm. For example, an
analysis as in [9] using Lin-identities yields


‖uI − uh‖1,ε ≤ Ch2‖u‖3,Ω.
However, in many cases the regularity requirements for superconvergence are not realistic,
not even for the simple model problem


−∆u = 1, u|δΩ = 0,


where due to corner singularities one may assume that at best


u ∈ H3−δ(Ω), ∀δ > 0.


If the coefficients of (1) themselves have low regularity the situation is even worse. For
instance, if the right hand side has some singularity which forces f to lie in some low
order Sobolev space then by the lifting property of the solution operator this carries over
to the solution u:


f ∈ Hσ(Ω) =⇒ u ∈ H2+σ(Ω),


i.e. it is clear that in the general case we cannot expect u ∈ H3(Ω).


Remark 1. Also note that for domains with obtuse angles, for instance the case of convex


polygons, the effect of corner singularities can be even stronger. If we consider Dirichlet


boundary conditions near some vertex P corresponding to the maximal interior angle α,
the solution u locally behaves as r


π
α , with r being the distance from P , and hence forces


u to lie at best in the Sobolev space H1+ π
α
−δ(Ω) for all δ > 0.
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Now naturally the question arises: How does lower regularity of u affect the phe-
nomenon of supercloseness? Moreover, does the rate of convergence depend on the regu-
larity in some “continuous” way? In this paper we address those issues both theoretically
and numerically and derive superconvergence results where the right hand side of our
a priori estimate no longer depends on the H3 norm but merely requires finiteness of
some weaker functional, e.g. the fractional Sobolev seminorm | . |2+σ, σ ∈ (0, 1), or equiv-
alent norms in interpolation spaces.


The paper is structured as follows. In Section 2 we derive bounds for the standard
Galerkin method, followed by corresponding numerical experiments in Section 3. Sub-
sequently, we discuss the extension of the estimates to the streamline diffusion FEM in
Section 4 and present numerical results for the SDFEM in Section 5.


Indeed, it is our aim to extend the analysis to stabilized methods on layer-adapted
meshes, similarly as in [9]. That analysis is based on a solution decomposition and uses,
for instance for the smooth part of the solution S, bounds of the type


‖SI − Sh‖1,ε ≤ C(N−1 lnN)2(|S|3 + ‖S‖2,∞).


In the present paper where we mostly consider isotropic meshes we therefore tried to
avoid the application of the theory of interpolation spaces to obtain results in fractional
order Sobolev spaces. While we succeeded in the error analysis of the Galerkin part (see
Section 2) we had some trouble with the convective term and some stabilization term
of the SDFEM (see Section 4). For these terms we, so far, have no alternatives as to
apply interpolation spaces. The main ingredients and results of this theory needed in this
article are presented in the Appendix.


2. Galerkin error analysis


Let
Vh := {v ∈ H1


0 (Ω) : v|T ∈ Q1(T ), for all T ∈ Th}
be the bilinear finite element space. Then the Galerkin approximation uh of u solves


a(uh, v) =


∫


Ω


fv dx, for all v ∈ Vh.


In the sequel we suppose that u ∈ H2(Ω) and denote by uI ∈ Vh the nodal interpolant
of the exact solution. To get an estimation of the error ‖uI − uh‖1,ε we make use of
coercivity of the bilinear form a(., .) of (3) and apply Galerkin orthogonality:


αcoerc‖uI − uh‖21,ε ≤ a(uI − uh, u
I − uh) = a(uI − u, uI − uh). (5)


Consequently, for an arbitrary function v ∈ Vh we will estimate the following three terms:


a(u− uI , v) = ε


∫


Ω


∇(u− uI) · ∇v dx +


∫


Ω


b · ∇(u− uI)v dx+


∫


Ω


c (u− uI)v dx.


2.1. The diffusion term


Let us first bound the diffusion term of the Galerkin part given by


ε


∫


Ω


∇(u− uI) · ∇v dx = ε


∫


Ω


(u− uI)xvx dx+ ε


∫


Ω


(u− uI)yvy dx.


175







Clearly, it is enough to estimate integrals on an arbitrary element that only involve
derivatives with respect to the first argument. In combination with the triangle inequality,
summing up all contributions will give an upper bound.
The key observation for this type of integrals is the fact that on every element a similar
expression vanishes for quadratic polynomials:


∫


T


(p− pI)xvx dx = 0, for all p ∈ P2. (6)


Hence, we insert additional degrees of freedom by just subtracting zero on every element
and subsequently bound the interpolation error of u− p :


ε|
∫


T


(u− uI)xvx dx| = ε|
∫


T


((u− p)− (u− p)I)xvx dx|


≤ Cε (hx‖(u− p)xx‖0,T + hy‖(u− p)xy‖0,T ) ‖vx‖0,T , (7)


Note that we are still in the position to choose some particular polynomial p ∈ P2. The
following lemma motivates this choice.


Lemma 1. Let D ⊂ R
2 be a bounded domain. Then for all σ ∈ (0, 1) and w ∈ Hσ(D)


‖ w − Πw ‖0,D≤
diam(D)1+σ


|D| 12
|w|σ,D, (8)


where Πw := 1
|D|


∫


D
w dx denotes the average of w over D.


Proof. By the Cauchy-Schwarz inequality we obtain


∫


D


(


w(x)− 1


|D|


∫


D


w(x′) dx′


)2


dx ≤ 1


|D|


∫


D


∫


D


(w(x)− w(x′))
2
dx′ dx


Since the diameter of D is the supremum of all distances of points in D, we have for all
x,x′ ∈ D: |x− x′| ≤ diam(D) and hence,


∫


D


(


w(x)− 1


|D|


∫


D


w(x′) dx′


)2


dx ≤ diam(D)2+2σ


|D|


∫∫


D×D


|w(x)− w(x′)|2
|x− x′|2+2σ


dx′ dx.


We now continue to estimate (7). If we denote by uxx|T and uxy |T the averages of the
two partial derivatives of u on some element T and insert the quadratic polynomial


p(x, y) =
1


2
uxx|T x2 + uxy |T xy


into (7), Lemma 1 yields the fractional estimate


ε|
∫


T


(u− uI)xvx dx| ≤ Cεhσ (hx|uxx|σ, T + hy|uxy|σ, T ) ‖vx‖0,T ,
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on every element T ∈ Th and hence globally


ε|
∫


Ω


∇(u− uI) · ∇v dx| ≤ Cε
1


2h1+σ|u|2+σ,Ω‖v‖1,ε,Ω. (9)


After some closer look on the constant in (9) coming from Lemma 1, one easily checks that
it unfavourably depends on the element aspect ratio hx/hy. However, by working with
interpolation spaces, it is possible to improve this bound to obtain anisotropic estimates
of the difference of a function and its mean in the L2 norm. To derive this estimate let us
consider rectangular domains in the sequel. We start with the following one dimensional
consideration.


Lemma 2. Let h > 0, I := (0, h) and u ∈ H1(I). Define Π : H1(I) → R to be the


averaging operator: Πu := 1
h


∫ h


0
u dx. Then


‖u−Πu‖0,I ≤
√
3


3
h |u|1,I.


Proof. The estimate is an immediate consequence of the Bramble-Hilbert Lemma. After
assuming that u lies in the dense subset C1(I) a direct calculation yields the same estimate
plus the constant involved.


Next we will apply this lemma in two dimensions to obtain an anisotropic estimate
for rectangular domains.


Lemma 3. Let hx, hy > 0, R := (0, hx)× (0, hy), u ∈ H1(R). Define ΠR : H1(R) → R


to be the averaging operator over R, i.e. ΠRu :=
1


hxhy


∫


R


u dx. Then


‖u− ΠRu‖0,R ≤
√
3


3
(hx ‖ux‖0,R + hy ‖uy‖0,R).


Proof. The idea is to apply Lemma 2 consecutively in the two dimensions. Let us therefor
define two operators Πx and Πy that act on only one respective dimension:


(Πxu)(y) :=
1


hx


∫ hx


0


u(s, y)ds, (Πyu)(x) :=
1


hy


∫ hy


0


u(x, t)dt.


Also note that since C1(R) is dense in H1(R) the function u is again assumed to be
continuously differentiable on R. One easily verifies that ΠR = Πx ◦ Πy = Πy ◦ Πx. By
the triangle inequality, our quantity of interest will first be split into two parts:


‖u− ΠRu‖0 ≤ ‖u−Πxu‖0 + ‖Πxu−ΠRu‖0. (10)


An application of Lemma 2 on the first term yields


‖u− Πxu‖20 =
∫ hy


0


[


∫ hx


0


(


u(x, y)− 1


hx


∫ hx


0


u(s, y)ds


)2


dx


]


dy


≤ h2
x


3


∫ hy


0


[
∫ hx


0


((∂xu)(x, y))
2dx


]


dy =
h2
x


3
‖ux‖20.
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Similarly, for the second part an application of Lemma 2 gives


‖ΠRu− Πxu‖20 =
∫ hx


0


[
∫ hy


0


(Πy(Πxu)− (Πxu)(y))
2 dy


]


dx


≤
h2
y


3


∫ hx


0


[
∫ hy


0


1


hx


∫ hx


0


((∂yu)(s, y))
2dsdy


]


dx ≤
h2
y


3
‖uy‖20.


Finally, collecting both estimates in (10) concludes the proof.


Our next aim is to get equivalent estimates if we assume u ∈ H2+σ(Ω) for some
σ ∈ (0, 1). The essential tool will be Theorem 3 (see Appendix) that allows to “inter-
polate” the known result from Lemma 2 and Lemma 3 to an estimate that is valid in
interpolated spaces.


Thus, using the same notation as in Theorem 3, let us define the respective spaces
and the action of the operator T as follows


A1 := L2(Ω), A2 := H1(Ω),


B := L2(Ω), Tu := u−ΠΩu


Indeed, for the rectangle R := (x0, x0 + hx)× (y0, y0 + hy) we know from Lemma 3 that


‖Tu‖0, R ≤ 1


3


√
3hR |u|1,R with hR :=


√


h2
x + h2


y (11)


and therefore ‖T‖H1(R)→L2(R) ≤ 1
3


√
3 hR.


By Cauchy-Schwarz the projection ΠR is L2 stable, i.e.


‖ΠRu‖0, R = |ΠRu| |R| 12 =
1


|R| 12


∣


∣


∣


∣


∫


R


u dx


∣


∣


∣


∣


≤ ‖u‖0, R.


Hence,


‖Tu‖0,R ≤ ‖u‖0, R + ‖ΠRu‖0, R ≤ 2 ‖u‖0,R (12)


which yields ‖T‖L2(R)→L2(R) ≤ 2. Eventually, an application of Theorem 3 (Appendix)
yields a bound on the operator norm of T considered on its domain [L2(R), H1(R)]2,σ:


‖T‖[L2(R),H1(R)]2,σ→L2(R) ≤ 21−σ(
1


3


√
3h)σ.


Summarizing we derived the following


Lemma 4. Let hx, hy > 0, R := (x0, x0 + hx)× (y0, y0 + hy), u ∈ [L2(R), H1(R)]2,σ for


some σ ∈ [0, 1] and the averaging operator ΠR be defined as above. Then the following


estimate holds


‖u−ΠRu‖0,R ≤ Chσ‖u‖[L2(R),H1(R)]2,σ ,


where h := diam(R) and the occuring constant C is independent of the element aspect


ratio.
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Now let us continue to get an anisotropic estimate of the diffusion term. Resuming (7)
we proceed in the same fashion as before: Define uxx|T := ΠTuxx and uxy |T := ΠTuxy


to be the averages of the respective functions on element T and insert the particular
polynomial


p(x, y) =
1


2
uxx|T x2 + uxy |T xy


into (7). Eventually, Lemma 4 yields the fractional estimate


ε|
∫


T


(u− uI)xvx dx| ≤ Cεhσ
(


hx‖uxx‖[L2(T ),H1(T )]2,σ + hy‖uxy‖[L2(T ),H1(T )]2,σ


)


‖vx‖0,T ,


on every element T ∈ Th and hence globally using Lemma 8 of the Appendix:


ε|
∫


Ω


∇(u− uI) · ∇v dx| ≤ Cε
1


2h1+σ
(


‖uxx‖[L2(Ω),H1(Ω)]2,σ + ‖uxy‖[L2(Ω),H1(Ω)]2,σ


)


|v|1,ε,Ω.


Finally, by applying norm equivalence of the fractional Sobolev norm and the norm in
the interpolation space (cf. Theorem 4 in the Appendix) we can summarize the result in
the following


Lemma 5. Let the function u satisfy the regularity assumption u ∈ H2+σ(Ω) for some


σ ∈ [0, 1]. Then the following estimate holds with a constant C independent of the mesh:


ε|
∫


Ω


∇(u− uI) · ∇v dx| ≤ Cε
1


2h1+σ‖u‖2+σ,Ω‖v‖1,ε,Ω. (13)


2.2. The convection term


Let us now continue with the estimation of the convection term
∫


Ω


b · ∇(u− uI)v dx


under low regularity assumptions. First note that without loss of generality it is possible
to assume that the vector field b is piecewise constant on every element. This can easily
be seen by inserting an elementwise constant interpolant b̂ of b:


|
∫


Ω


(b− b̂) · ∇(u− uI)v dx| ≤ h‖b‖1,∞,Ω |u− uI |1,Ω ‖v‖0,Ω ≤ Ch2|u|2,Ω ‖v‖0,Ω.


Thus, we integrate by parts and obtain
∫


Ω


b · ∇(u− uI)v dx = −
∫


Ω


(u− uI)(∇ · b)v dx−
∫


Ω


(u− uI)b · ∇v dx. (14)


The first term can be handled by standard interpolation estimates,


|
∫


Ω


(u− uI)(∇ · b)v dx| ≤ Ch2|u|2,Ω ‖v‖0,Ω.


Hence only the second term still makes trouble. Motivated by what has been done in the
previous subsection we will again add and subtract the second order polynomials


p|T (x, y) =
1


2
uxx|T x2 +


1


2
uyy |T y2
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on every element. Thus, the second term of (14) can be split into
∫


Ω


(u− uI)b · ∇v dx =
∑


T


∫


T


((u− p)− (u− p)I)b · ∇v dx +
∑


T


∫


T


(p− pI)b · ∇v dx.


(15)


This decomposition allows us to treat the first part similar to the steps applied to the
diffusion term. Additionally, an inverse inequality gives


∣


∣


∣


∣


∣


∑


T


∫


T


((u− p)− (u− p)I)b · ∇v dx


∣


∣


∣


∣


∣


≤ Ch2
∑


T


|u− p|2, T ‖b · ∇v‖0, T


≤ Ch1+σ |u|2+σ,Ω ‖v‖0,Ω.


We continue with the second term in (15). Since p ∈ P2 and b · ∇v ∈ P1 one can show
directly that


∑


T


∫


T


(p− pI)b · ∇v dx = − 1


12


∑


T


(


h2
x


∫


T


pxxb · ∇v dx+ h2
y


∫


T


pyyb · ∇v dx


)


,


and hence estimate
∣


∣


∣


∣


∣


∑


T


∫


T


(p− pI)b · ∇v dx


∣


∣


∣


∣


∣


≤ C


∣


∣


∣


∣


∣


∑


T


(h2
x uxx|T + h2


y uyy |T )


∫


T


(b1vx + b2vy) dx


∣


∣


∣


∣


∣


(16)


After expanding (16) every single contributions of these four summands can be estimated
in the same way. As an example we demonstrate the steps for one occuring term. Hereby,
the set T̃h is obtained by discarding from Th all elements which share an edge with the
east boundary, {x ∈ ∂Ω : x = 1}, of Ω. Moreover, for every element T ∈ T̃h, T


+ shall
denote the “east” neighboring element of T . The sets eT and wT refer to the “east” or
the “west” boundary of T , respectively:


∑


T∈Th


h2
x uxx|T


∫


T


b1vx dx = h2
x


∑


T∈Th


uxx|T b1|T


(
∫


eT


−
∫


wT


)


v dy


= h2
x


∑


T∈T̃h


(uxx|T b1|T − uxx|T+ b1|T+)


∫


eT


v dy


= h2
x


∑


T∈T̃h


(uxx|T (b1|T − b1|T+) + b1|T+(uxx|T − uxx|T+))


∫


eT


v dy.


(17)


Before we can continue to estimate the differences of the means on neighboring elements
we need the following two lemmas.


Lemma 6. Let u ∈ H1(I) be defined on the interval I := (0, 2h) for some h > 0 and let


Π(a,b)u := 1
b−a


∫ b


a
u(x) dx be the mean value operator on the interval (a, b) ⊂ I. Then the


difference of the two neighboring means Π(0,h)u and Π(h,2h)u can be bounded by


|Π(0,h)u− Π(h,2h)u| ≤
2
√
2


3
h


1


2 |u|1, I .
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Proof. Let us first assume that the function u ∈ C1(I). Essentially, we insert a zero
such that we can introduce the derivative of u by means of the fundamental theorem of
calculus. The general statement follows from the density of C1(I) in H1(I):


|Π(0,h)u−Π(h,2h)u| =
1


h


∣


∣


∣


∣


∫ h


0


(u(x)− u(h))dx+


∫ 2h


h


(u(h)− u(y))dy


∣


∣


∣


∣


≤ 1


h


∫ h


0


∣


∣


∣


∣


∫ x


h


u′(s)ds


∣


∣


∣


∣


dx+
1


h


∫ 2h


h


∣


∣


∣


∣


∫ h


y


u′(s)ds


∣


∣


∣


∣


dy


≤ 2


3
h


1


2


(


|u|1, (0,h) + |u|1, (h,2h)
)


.


Lemma 7. Let D ⊂ R
2 be open such that D̄ := T̄1 ∪ T̄2 with the neighboring rectangles


T1 := (0, hx)× (0, hy) and T2 := (hx, 2hx)× (0, hy).


Then the neighboring means of some function u ∈ H1(D) can be bounded by


|ΠT1
u− ΠT2


u| ≤ 2
√
2


3


h
1


2
x


h
1


2
y


‖ux‖0, D.


Proof. We want to apply Lemma 6. Thus, write


|ΠT1
u− ΠT2


u| = 1


hy


∣


∣


∣


∣


∫ hy


0


1


hx


(
∫ hx


0


u(x, y)dx−
∫ 2hx


hx


u(x, y)dx


)


dy


∣


∣


∣


∣


≤ 2
√
2


3


h
1


2
x


hy


∣


∣


∣


∣


∣


∫ hy


0


(
∫ 2hx


0


((∂xu)(x, y))
2dx


)


1


2


dy


∣


∣


∣


∣


∣


≤ 2
√
2


3


h
1


2
x


h
1


2
y


‖ux‖0,D.


The fractional version of Lemma 7 is again derived in interpolation spaces.


Corollary 1. Let the assumptions be as in Lemma 7 and σ ∈ [0, 1]. Then


|ΠT1
u− ΠT2


u| ≤ C
h
σ− 1


2
x


h
1


2
y


‖u‖[L2(D),H1(D)]2,σ .


Proof. Since


|ΠT1
u− ΠT2


u| ≤
√
2


h
1


2
xh


1


2
y


‖u‖0,D


the statement follows from Lemma 7 using interpolation spaces.


181







Eventually, from (17) we move on by estimating


∣


∣


∣


∣


∣


∣


∑


T∈Th


h2
x uxx|T


∫


T


b1vxdx


∣


∣


∣


∣


∣


∣


≤ Ch2
x


∑


T∈T̃h


(


hx |uxx|T |+
h
σ− 1


2
x


h
1


2
y


‖uxx‖[L2(T∪T+),H1(T∪T+)]2,σ


)


∫


eT


v dy


≤ Ch2
x


(


‖uxx‖0,Ω + hσ−1
x ‖uxx‖[L2(Ω),H1(Ω)]2,σ


)


‖v‖0,Ω
≤ Ch1+σ


x ‖u‖2+σ,Ω‖v‖0,Ω.


Altogether, we continue from (16) and obtain


∣


∣


∣


∣


∣


∑


T


∫


T


(p− pI)b · ∇v dx


∣


∣


∣


∣


∣


≤ Ch1+σ ‖u‖2+σ,Ω‖v‖0,Ω.


Summarizing, the convection term admits the following bound:
∫


Ω


b · ∇(u− uI)v dx ≤ Ch1+σ ‖u‖2+σ,Ω‖v‖0,Ω. (18)


Remark 2. Note that by using standard interpolation estimates, one obtains a bound of


order O(h2) for the reaction term.


Finally, the collection of every single contribution together with (5) allows to summa-
rize the results in the following


Theorem 1. Let σ ∈ [0, 1] and assume u ∈ H2+σ(Ω) for the exact solution of (3).
Furthermore, let uI be the nodal interpolant of u and uh its bilinear finite element approxi-


mation. Then the following bound holds:


‖uI − uh‖1,ε ≤ C(ε
1


2h1+σ + h1+σ + h2)‖u‖2+σ. (19)


3. Numerical experiment for the Galerkin method


Let us now have a look on how numerical experiments reflect the order of convergence
suggested by the theoretical estimates. Because the Galerkin method is not the adequate
method for ε ≪ 1 we only present results for ε = 1 and consider the following convection-
diffusion-reaction boundary value problem


−∆u − 0.5ux − uy + u = 1, u|∂Ω = 0


in domains Ωa that are parallelograms spanned by the two vectors


(


1
0


)


,


(


−x0


1


)


, x0 ≥ 0.


It is well known that the solution exhibits corner singularities in dependence of the obtuse
angle at the origin. Hence, the parameter x0 controls the strength of the singularity at the
origin and thereby the regularity of the solution. A closer investigation using regularity
theory in non-smooth domains (cf. [8], [3] and [6]) reveals that the solution has the
following regularity in dependence of the parameter x0:


u ∈ Hs−δ(Ω), ∀δ > 0, with s = 1 +
1


0.5 + arctan(x0)/π
.
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x0 0.75 0.5 0.25
TOC 1.4188 1.5442 1.7302


EOC(l − 2) 1.4308 1.5627 1.7555
EOC(l − 1) 1.4241 1.5534 1.74865
EOC(l) 1.4230 1.5504 1.7430


Table 1: Rates of convergence for ‖uI − uh‖1,ε.


For three different values of x0 we compare in Table 1 the theoretical and experimental
orders of convergence (TOC/EOC) for the quantity ‖uI−uh‖1,ε. The EOCs are displayed
for the last three levels of uniform grid refinement. Since for this example we cannot access
the exact solution, a reference solution is computed on level l + 1 using biquadratic Q2


elements that substitutes for the exact solution. One observes that the numerical rates
are astonishingly close to the theoretical orders of supercloseness.


4. SDFEM error analysis


Let us now turn to the streamline-diffusion finite element method (SDFEM) as a dis-
cretization for the boundary value problem (1). Using the same finite element space Vh


as in Section 2, the discrete problem related to the SDFEM reads as follows:


Find u ∈ Vh such that for all v ∈ Vh


aSD(u, v) :=a(u, v)+
∑


T∈Th


δT (−ε∆u+ b · ∇u+ cu, b · ∇v)T =(f, v)+
∑


T∈Th


δT (f,b · ∇v)T ,


(20)


where (., .) and (., .)T denote the standard L2 scalar products on Ω or T respectively. The
parameters δT have to be chosen for all elements T . If for an arbitrary element we define
the local Péclet number by


PeT :=
‖b‖∞,ThT


2ε


then the analysis of the SDFEM (cf. [7]) suggests on isotropic meshes to choose the
following values for δT :


δT =


{


δ0hT/‖b‖∞,T , if PeT > 1


δ1h
2
T/ε, if PeT ≤ 1,


with appropriate user chosen constants δ0 and δ1. Next we introduce the streamline-
diffusion norm


‖v‖2SD := ε|v|21 + ‖v‖20 +
∑


T∈Th


δT‖b · ∇v‖20,T , (21)


in which one shows coercivity of the bilinear form, cf. [7]. Since the SDFEM still preserves
consistency of the discretization we have, similar to (5),


αSD‖uI − uh‖2SD ≤ aSD(u
I − uh, u


I − uh) = aSD(u
I − u, uI − uh). (22)
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The streamline-diffusion finite element method was proposed by Hughes et al. in [4] and
first analyzed by Johnson and Nävert [5] in order to handle the known instabilities of the
Galerkin method. It was proved in the SD-norm that for linear or bilinear elements


‖u− uh‖SD ≤ C(ε
1


2 + h
1


2 )h|u|2, (23)


which carries over to a bound for ‖uI−uh‖SD and also implies convergence in L2 with order


O(h
3


2 ) (assuming ε ≤ Ch, the convection-dominated case). Remark that for problem (1)
the application of the Nitsche-Trick for proving optimal L2 convergence is not possible.


In several papers the optimal accuracy of the SDFEM in L2 was discussed depending
on the geometry of the mesh (see [12]). Using Lin identities (cf. [10], [9] and [11]) one
can prove a supercloseness result on tensor product meshes or uniform triangular meshes
of the type


‖uI − uh‖SD ≤ C(ε
1


2h2 + h2)(|u|3 + |u|2,∞) (24)


which implies L2 convergence of optimal order O(h2) in the convection-dominated case.
By imitating the techniques for the Galerkin bilinear form in Section 2 on the two


essential additional stabilizing terms in (20) we derive the following bounds


∑


T


δT


∫


T


b · ∇(u− uI)b · ∇v dx ≤ Ch1+σ‖u‖2+σ,Ω‖v‖SD,Ω,


ε
∑


T


δT


∫


T


∆ub · ∇v dx ≤ Cεhσ‖u‖2+σ,Ω‖v‖SD.


Together with the estimates for the Galerkin bilinear form, inequalitites (22) and (23)
the above bounds yield the result


‖uI − uh‖SD ≤ C(ε
1


2h1+σ + hmax{ 3


2
,1+σ} + ε


1


2 min{h, ε 1


2hσ})‖u‖2+σ,Ω


≤ Chmax{ 3


2
,1+σ}‖u‖2+σ,Ω, for ε ≤ Ch.


For σ < 1
2
these estimates seem to be suboptimal since the regularity does not have


any impact on the rate of convergence in this case. In fact, it is possible to improve
these bounds by pursuing a different strategy. The idea is to take the known bounds
for H2- and H3-regularity and apply Theorem 3 of the Appendix to obtain fractional
estimates. The bounds (24) obtained via Lin identities, however, are not practicable for
the interpolation theorem, since they involve norms in two different spaces to measure
the regularity. However, using the techniques from the Galerkin estimates above, it is
possible to get rid of the | . |2,∞ norm at the right hand side of (24):


Let us first consider the convection term. From the derivation of (18) and the analysis
leading to the standard estimate (23) (cf. [7]) one recalls that


∣


∣(b · ∇(u− uI), v)
∣


∣ ≤ Ch2‖u‖3‖v‖SD,
∣


∣(b · ∇(u− uI), v)
∣


∣ ≤ Ch
3


2 |u|2‖v‖SD,Ω. (25)


For every v ∈ Vh let us define the operator Tv : H2(Ω) → R : u 7→
∫


Ω
b · ∇(u − uI)v dx.


Since from (25) we know upper bounds for ‖Tv‖H2(Ω)→R and ‖Tv‖H3(Ω)→R an application
of Theorem 3 yields the interpolated estimate


|
∫


Ω


b · ∇(u− uI)v dx| ≤ Ch
3


2
+σ


2 ‖u‖2+σ‖v‖SD. (26)
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‖u‖2 ‖u‖3 ‖u‖2+σ


∫


b · ∇(u− uI)v h
3


2 h2 h
3


2
+σ


2


∑


δT
∫


b · ∇(u− uI)b · ∇v h
3


2 h2 h
3


2
+σ


2


ε
∑


δT
∫


∆(u− uI)b · ∇v ε
1


2h εh ε
1


2
+σ


2 h


Table 2: Interpolation results.


Analogously, a similar definition of operators {Tv}v∈Vh
adapted to the remaining terms


in the stabilized bilinear form aSD(., .) together with Theorem 3 of the Appendix yields
their respective fractional bounds. Table 2 shows the known error bounds for H2- and
H3-regularity and the interpolated result. A collection of every single contribution and
the representation of the error (22) yields the final estimate that only requires H2+σ-
regularity:


Theorem 2. Let σ ∈ [0, 1] and assume u ∈ H2+σ(Ω) for the exact solution of (3).
Furthermore, let uI be the nodal interpolant of u and uh its bilinear finite element approxi-


mation using streamline diffusion stabilization. Then the following bound holds:


‖uI − uh‖SD ≤ C(ε
1


2h1+σ + h
3


2
+σ


2 + h2 + ε
1


2
+σ


2 h) ‖u‖2+σ. (27)


5. Numerical Experiments for the SDFEM


The folowing numerical experiment shall illustrate the dependency of the rate of
supercloseness on the regularity of the solution in comparison with (27). Thus, consider
the following homogeneous Dirichlet boundary value problem in the domain Ω = (0, 1)2


with ε = 10−3:


−ε∆u−
(


1 + x
1 + y


)


· ∇u+ (2 + x2)u = f. (28)


We assume the exact solution of (28) to be


uex(x) = |x|−αxy(1− x)(1− y)


and determine the source term f such that uex satisfies the differential equation (28).
A closer investigation shows that the parameter α > 0 controls the regularity in the
following way


uex ∈ H3−α−δ(Ω), ∀δ > 0.


For the computations we choose several values for α. The corresponding regularity of uex


together with the experimental orders of supercloseness of the last three uniform refine-
ments are displayed in Table 3. Concerning the decay of ‖uI − uh‖SD one observes that
indeed the order of convergence depends on the regularity of the solution. However, the
observed rates reflect slightly better convergence properties than the theory predicts.
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s : uex ∈ Hs(Ω) 2.1 2.2 2.3 2.7
EOC(l − 2) 1.6251 1.7398 1.8549 2.0416
EOC(l − 1) 1.6176 1.7294 1.8442 2.0260
EOC(l) 1.6140 1.7229 1.8366 2.0162


Table 3: EOC for ‖uI − uh‖SD.


A. Appendix - Interpolation Spaces


Here we give a short survey of some facts about interpolation spaces as far as their
properties have been used in the article. The interpolation spaces are to be understood
in the sense of the “real interpolation method”. For more information and a proof of the
main theorems the reader is referred to [2] and [1].


First, for two Banach spaces A1 and A2 with A2 ⊂ A1 we give a definition of the
interpolation space [A1, A2]2,σ (which is also a Banach space).


Definition 1. Let A1, A2 with A2 ⊂ A1 be two Banach spaces and σ ∈ (0, 1). The Banach
space [A1, A2]2,σ consists of all u ∈ A1 that are finite in the following norm


‖u‖[A1,A2]2,σ :=


(


∫ ∞


0


t−2σ−1


(


inf
v∈A2


(‖u− v‖A1
+ t‖v‖A2


)


)2


dt


)
1


2


. (29)


Moreover we agree on the convention that [A1, A2]2,0 := A1 and [A1, A2]2,1 := A2.


Concerning interpolation spaces, the main tool used in this article is the following
Theorem formulated in terms of operators on these very spaces.


Theorem 3. Let A1, A2 with A2 ⊂ A1 and B be three Banach spaces and let T be


a linear operator that maps A1 to B. Furthermore let A12 denote the interpolation space


[A1, A2]2,σ for some σ ∈ (0, 1). Then T can be considered as a linear operator from A12


to B. Moreover, the corresponding operator norm satisfies


‖T‖A12→B := sup
u∈A12\{0}


‖Tu‖B
‖u‖A12


≤ ‖T‖1−σ
A1→B ‖T‖σA2→B.


Furthermore, it is possible to characterize the following particular interpolation spaces
as fractional order Sobolev spaces. A proof of the subsequent theorem can be found, e.g.,
in [2].


Theorem 4. Let σ ∈ [0, 1]. For all domains Ω with Lipschitz boundary one has


Hσ(Ω) = [L2(Ω), H
1(Ω)]σ,2


and the norms are equivalent.


Also note that in order to sum up estimates that were derived locally one needs the
following summation property for (29) which follows from a direct calculation.


Lemma 8. Let Ω be a domain and T a partition on Ω. Then
∑


T∈Th


‖u‖2[L2(T ),H1(T )]σ,2
≤ 2‖u‖2[L2(Ω),H1(Ω)]σ,2


.
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Abstract


Song, Yin and Zhang (Int. J. Numer. Anal. Model. 4: 127–140, 2007) discov-
ered a remarkable property of oscillatory finite element solutions of one-dimensional
convection-diffusion problems that leads to a novel numerical method for the solution
of such problems. In the present paper this property is described using several figures,
then a simple proof of the phenomenon is given which is much more intuitive than
the technical analysis of Song et al.


1. The problem and the oscillation phenomenon


Consider the two-point boundary value problem


−εu′′ + au′ + bu = f on (0, 1), u(0) = u(1) = 0, (1)


where the parameter ε satisfies 0 < ε ≪ 1, while a, b, f ∈ C[0, 1] with a > 0 and
b ≥ 0. Problems such as this, where convection dominates diffusion, typically have
solutions that are well-behaved away from x = 1 but near x = 1 change rapidly. We
say that the solution has a boundary layer at x = 1. See Figure 1 for an example.


Remark 1. All figures in this paper are for the particular example


−εu′′ + u′ = x on (0, 1), u(0) = u(1) = 0, (2)


with ε = 5× 10−3. Its solution behaves in a manner that is completely typical of this
class of problems.
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Figure 1: True solution of (2) with ε = 5× 10−3.


Problems like (1) and their higher-dimensional analogues have many practi-
cal applications so much attention has been paid to their numerical solution. An
overview of this area of research is given in [3].


In this paper we shall consider the solution of (1) using a Galerkin finite element
method with piecewise linear test and trial functions that we now describe. First,
write (1) in the following weak form: find u ∈ H1


0 (0, 1) satisfying
∫ 1


0


[εu′(x)v′(x) + a(x)u′(x)v(x) + b(x)u(x)v(x)] dx


=


∫ 1


0


f(x)v(x) dx ∀v ∈ H1
0 (0, 1). (3)


Let the mesh be 0 = x0 < x1 < x2 < · · · < xN = 1. For i = 1, 2, . . . , N − 1, let
φi ∈ C[0, 1] be the standard finite element piecewise linear function that satisfies
φi(xj) = δij and support φi = [xi−1, xi+1]. Set Vh = span {φ1, φ2, . . . , φN−1}, so
Vh ⊂ H1


0 (0, 1). Then our piecewise linear Galerkin finite element solution uh ∈ Vh is
defined by the following discretization of (3):


∫ 1


0


[εu′


h(x)φ
′


i(x) + aiu
′


h(x)φi(x) + biuh(x)φi(x)] dx


=


∫ 1


0


f(x)φi(x) dx for i = 1, 2, . . . , N − 1. (4)


Note here the nonstandard quadrature rule where a(x) and b(x) were replaced by
constants ai := a(xi) and bi := b(xi) associated with the test function φi; this rule
is introduced to ensure that our finite element method generates the same finite
difference scheme as the papers [1, 2], whose results will be used in the proof of our
Theorem 1. See also Remark 3 below.
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Figure 2: Computed solution on a uniform mesh with 10 intervals.
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Figure 3: Computed solution with additional mesh point 0.92.


Throughout the paper, when we say “piecewise linear Galerkin method” we mean
the finite element method just described.


First, we solve the boundary value problem on a uniform mesh containing N mesh
intervals where N ≪ ε−1; this relationship between N and ε is usual in practical
problems. When (2) is solved by the piecewise linear Galerkin method on a uniform
mesh with N = 10, the solution is shown in Figure 2. This oscillatory and inaccurate
solution is typical of what happens when one applies the piecewise linear Galerkin
method to a convection-diffusion problem on a coarse mesh.


In [4] Song, Yin and Zhang modified the mesh in the Galerkin method by adding
an arbitrarily-chosen mesh point to the mesh interval where the boundary layer lies.
This is the interval (0.9, 1) in our numerical example. Figures 3 and 4 show the
computed solutions when the additional mesh points are 0.92 and 0.95 respectively.


Even though the oscillations have diminished, these two computed solutions are
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Figure 4: Computed solution with additional mesh point 0.95.
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Figure 5: Superimposed computed solutions.


not significantly better than the solution of Figure 2 and little seems to have been
gained. But now Song et al. had the clever idea of superimposing all three computed
solutions, as shown in Figure 5.


This figure reveals that although the oscillations differ greatly, nevertheless all
the computed solutions intersect at a common point in each of the mesh intervals
(0.1, 0.2), (0.2, 0.3), . . . , (0.8, 0.9)! Further numerical experiments confirm this fact:
when a mesh point is added anywhere in the interval (0.9, 1), each computed solution
passes through the same fixed point in each of the mesh intervals between 0.1 and
0.9. Indeed, when more than one mesh point is added in (0.9, 1), the piecewise linear
Galerkin solution still passes through the same fixed points.


And even more is true: in Figure 6 we superimpose the true solution of Figure 1
on the computed solutions of Figure 5, and clearly the common intersection points
of the computed solutions are good approximations of the true solution!
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Figure 6: True solution with computed solutions.


The behaviour of Figures 5 and 6 is replicated if one varies N or ε (while keeping
N ≪ ε−1) and when other test problems of the form (1) are considered.


The question now is: why does this happen?


2. Theoretical explanation


In [4], Song et al. give a complete theoretical explanation of the two phenomena
that we have described: common intersection points of all piecewise linear Galerkin
solutions when extra mesh point(s) are added inside the mesh interval containing the
layer, and the proximity of these common points to the true solution. This analysis
is 3 pages long and deals only with the special case of constant a and b ≡ 0 (it is
stated in [4] that their arguments can be extended to the general case of (1)). Their
arguments are somewhat intricate and consequently yield only a limited intuitive
understanding of what we have observed experimentally.


We shall now give a much simpler and shorter argument that explains Figures 5
and 6 for the general case of a, b ∈ C[0, 1] and reveals the fundamental reason that
these phenomena occur.


Suppose that we solve (1) using the piecewise linear Galerkin method on a uniform
mesh with N subintervals, where N ≪ ε−1. Set h = 1/N . Denote the computed
solution by uh ∈ C[0, 1]. The boundary layer in the true solution u lies inside the
interval (1−h, 1) because N ≪ ε−1; see [3]. We now introduce an arbitrary additional
mesh point (or points) in the interval (1 − h, 1). Let ûh denote the piecewise linear
Galerkin solution computed on this modified mesh.


The key insight of our analysis is that because uh and ûh share the same mesh
on [0, 1− h], one should compare them there instead of considering them on [0, 1].


On the interval [0, 1−h], the computed solution uh is the piecewise linear Galerkin
solution of the two-point boundary problem


−εv′′ + av′ + bv = f on (0, 1− h), v(0) = 0, v(1− h) = uh(1− h),
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Figure 7: Numerical solution to (6) with h = 1/10.


and the computed solution ûh is the Galerkin solution of the boundary value problem


−εw′′ + aw′ + bw = f on (0, 1− h), w(0) = 0, w(1− h) = ûh(1− h).


Consequently their difference uh − ûh is the piecewise linear Galerkin solution of the
boundary value problem


−εz′′+az′+bz = 0 on (0, 1−h), z(0) = 0, z(1−h) = uh(1−h)−ûh(1−h). (5)


In Lemma 1 we shall prove that on a uniform mesh with intervals of width h, the
piecewise linear Galerkin solution of the problem


−εζ ′′ + aζ ′ + bζ = 0 on (0, 1− h), ζ(0) = 0, ζ(1− h) = 1 (6)


oscillates about zero, in the sense that the computed solution equals zero at one point
in each of the mesh intervals (h, 2h), (2h, 3h), . . . , (1 − 2h, 1 − h) and is otherwise
non-zero in (0, 1−h]. This statement should be immediately plausible to those with
experience in the numerical solution of convection-diffusion problems; it is demon-
strated in Figure 7 for the differential operator of (2).


Denote the zeros of the Galerkin solution of (6) by ζ2, ζ3, . . . , ζN−1, where
(j−1)h < ζj < jh for each j. Note that the Galerkin solution of (5) is a constant mul-
tiple of the Galerkin solution of (6); the multiplier is uh(1−h)− ûh(1−h). Hence the
piecewise linear Galerkin solution of (5) also vanishes at the points ζ2, ζ3, . . . , ζN−1.
That is, uh(ζj) = ûh(ζj) for each j, which means that these two computed solutions
cross at each ζj ; and since the ζj are generated by problem (6), they are independent
of the presence or absence of mesh points in the interval (1− h, 1).


We conclude that all piecewise linear Galerkin solutions of (1) that are computed
on a uniform mesh {0, h, 2h, . . . , 1} that is modified by possibly adding mesh point(s)
to the interval (1−h, 1) will cross at the fixed points ζj for j = 2, 3, . . . , N −1. Thus
the phenomenon of Figure 5 has been explained.
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Lemma 1. Consider the two-point boundary value problem (6). Subdivide the inter-
val [0, 1− h] by a uniform mesh with intervals of width h and assume that


min
[0,1]


(
a


2
−


∣∣∣∣
hb


6
−


ε


h


∣∣∣∣
)


> 0. (7)


Then the piecewise linear Galerkin solution of (6) oscillates about zero, in the sense
that the computed solution equals zero at one point in each of the mesh intervals
(h, 2h), (2h, 3h), . . . , (1− 2h, 1− h) and is otherwise non-zero in (0, 1− h].


Proof. Let g ∈ C[0, 1−h] denote the piecewise linear Galerkin solution of (6) on the
given mesh. From (4), after division by h the difference scheme defining the nodal
values of g is


−
ε


h2


(
gi+1 − 2gi + gi−1


)
+


ai(gi+1 − gi−1)


2h
+


bi
6
(gi+1 + 4gi + gi−1) = 0


for i = 1, . . . , N − 2, with g0 = 0 and gN−1 = 1, where gj := g(jh) for all j. This
scheme can be rewritten as


(
ai
2h


+
bi
6
−


ε


h2


)
gi+1 +


(
4bi
6


+
2ε


h2


)
gi +


(
−


ai
2h


−
ε


h2
+


bi
6


)
gi−1 = 0 (8)


for i = 1, . . . , N − 2. The hypothesis (7) ensures that the coefficients of gi+1 and gi
are positive but the coefficient of gi−1 is negative.


Observe first that the solution of this difference scheme cannot have g1 = 0
because then taking i = 1 in (8) would imply that g2 = 0, and a similar inductive
argument then leads to gN−1 = 0 which is false. Thus g1 6= 0.


If g1 > 0, then taking i = 1 in (8) and recalling the signs of the coefficients
there and g0 = 0, we see that g2 < 0. Similarly, g1 < 0 implies that g2 > 0. Thus
in all cases one has g1g2 < 0. One can now proceed inductively, invoking (8) for
i = 2, 3, . . . , N − 2 and using the signs of its coefficients, to get gigi+1 < 0 for each i.
The desired result follows.


Remark 2. Inequality (7) says that h is sufficiently small (so a/2 dominates hb/6)
and that ε is small relative to h. Thus (7) is in practice a very mild restriction on
the mesh.


The accuracy of the computed solutions at the fixed crossing points that we
observed in Figure 6 will now be justified. The argument resembles that
of [4, Theorem 3.7], but see Remark 3 below.


Theorem 1. Subdivide [0, 1] by a uniform mesh of width h. Assume that h ≥ ε | ln ε|
and that (7) is satisfied. Then the piecewise linear Galerkin solution uh of the two-
point boundary value problem (1) satisfies


|u(ζi)− uh(ζi)| ≤ Ch2 for i = 2, 3, . . . , N − 1,


where the constant C is independent of ε and h.
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Proof. Since h ≥ ε | ln ε|, one can insert extra mesh points in the interval (1−h, 1) to
construct a Bakhvalov mesh for problem (1). See [3] for a description of this mesh.
It follows from [1] and [2] (the first paper proves the case b ≡ 0 and the second
shows how such results can be extended to b ≥ 0) that the piecewise linear Galerkin
solution uB on the Bakhvalov mesh satisfies max[0,1] |u(x)− uB(x)| ≤ Ch2 for some
constant C. But in particular this implies that |u(ζi) − uB(ζi)| ≤ Ch2 for each i
(since (7) holds true by hypothesis, Lemma 1 is valid and consequently the ζi are
well defined). But our analysis earlier in the section showed that uh(ζi) = uB(ζi) for
each i, so we are done.


Remark 3. The quadrature rule used in (4) was chosen to fit with the theory of [1],
where the convective term (au′)(xi) is approximated by the finite difference


a(xi)
uh(xi+1)− uh(xi−1)


xi+1 − xi−1
.


It is pointed out in [1, Remark 4] that, surprisingly, the convergence result for the
Bakhvalov mesh that we invoked in our proof of Theorem 1 is no longer valid if
instead one uses the slightly different difference approximation


a(xi)


2
·


[
uh(xi+1)− uh(xi)


xi+1 − xi


+
uh(xi)− uh(xi−1)


xi − xi−1


]
.


Thus it is not clear if Theorem 1 still holds true when we use some alternative
quadrature rule in (4). This issue seems to have been overlooked in [4], where only
constant-coefficient differential operators are analysed in detail and it is asserted that
the results can be “readily generalized” to operators with smooth coefficients.


3. Numerical results


We now describe an algorithm for recovering an accurate approximation to (1)
from an oscillatory Galerkin finite element solution. It is equivalent to Algorithm 1
of [4], but closer in spirit to the analysis given in Lemma 1 and Theorem 1.


Step 1: Compute uh, the Galerkin solution to (4) on a uniform mesh with N inter-
vals of width h = 1/N .


Step 2: Compute ζh, the Galerkin solution to (6).


Step 3: Take ζ2, ζ3, . . . , ζN−1 to be the zeros of ζh(x) in (h, 1− h). That is,


ζi =
xi−1ζ(xi)− xiζ(xi−1)


ζ(xi)− ζ(xi−1)
for i = 2, 3, . . . , N − 1.


Return: {uh(0), uh(ζ2), uh(ζ3), . . . , uh(ζN−1), uh(1)}.
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We now compute the errors obtained when this algorithm is applied to our test
problem (2), in order to demonstrate that the resulting solution is robust with re-
spect to ε and converges as described in Theorem 1. In fact not only is the computed
solution second-order accurate at the points ζi, but also its piecewise linear inter-
polant ũh (with knots at the ζi) is pointwise second-order accurate on the interval
[0, ζN−1]. In Table 1 we report the values of


EN := ‖u− ũh‖L∞[0,1−ζN−1]


for a range of values of ε and N . We consider only small ε since, when ε is large, the
numerical solution is not oscillatory and consequently one would not have to apply
the above recovery algorithm.


Table 1 shows that the method is second-order convergent.


ε N = 25 N = 26 N = 27 N = 28 N = 29 N = 210


10−6 4.88e-04 1.22e-04 3.05e-05 7.62e-06 1.90e-06 4.74e-07
10−7 4.88e-04 1.22e-04 3.05e-05 7.63e-06 1.91e-06 4.77e-07
10−8 4.88e-04 1.22e-04 3.05e-05 7.63e-06 1.91e-06 4.77e-07
10−9 4.88e-04 1.22e-04 3.05e-05 7.63e-06 1.91e-06 4.77e-07
10−10 4.88e-04 1.22e-04 3.05e-05 7.63e-06 1.91e-06 4.77e-07


Table 1: Errors EN for the above algorithm applied to (2).
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Abstract


A simple condition sufficient for non-oscillatory behavior of input/output systems
is formulated and discussed.


1. Introductory remarks


Input-output systems form a special subclass of the class of compartmental sys-
tems. The interest may be attracted for several reasons. As first, it is a simple but
nicely structured system.As second, it applies in many particular situations covering
both traditional as well as newly appearing areas of research. As third, one can reg-
ister still growing amount of new results and publications and huge growth of areas
of application.


2. Definitions, notation and auxiliary results


We are going to examine input-output systems, i.e. dynamical systems whose
generators are maps on finite dimensional spaces and whose structure is based on
a partial order of the basic space.


Let E = RN be the N -dimensional vector space of N -tuples of reals. This space
can be partially ordered via the natural order in the set of reals. We define x ∈ RN to
be nonnegative i.e. xT = (x1, ..., xN) ≥ 0 if xj ≥ 0, j = 1, ..., N . In other words, x ≥ 0
whenever x ∈ E+ = RN


+ . We define partial order by setting x ≤ y, x, y ∈ E whenever
y− x ∈ E+ and, equivalently, y ≥ x. We thus have E = RN = RN


+ −RN
+ = E+ − E+,


i.e. x = x+−x−, x+, x− ∈ RN
+ . An operator Amapping E into E satisfying AE+ ⊂ E+


is called nonnegative. This fact is symbolically denoted by by writing A ≥ 0. The
set of all linear maps of E into E can be partially ordered by setting A ≤ B means
that (B − A)E+ ⊂ E+ and equivalently B ≥ A.
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3. An example: Michaelis-Menten Kinetics


3.1. Michaelis-Menten-Kinetics


This example comes from Michaelis-Menten-Kinetics which follows the network


X + E0


k0
⇀
↽


k
−0


E1
κ0⇀ E0 + P. (3.1)


Here and in the following capital letters denote chemical species (E0, E1, X, P )
and the respective small letters (e0(t), e1(t), x(t), p(t)) the corresponding concentra-
tions at time t ≥ 0. The network (3.1) talks about a substrate X being transformed
into a product P by means of an enzyme E0 which has one binding side for X to
form a complex E1, the so called loaded form of the enzyme E0.


The above situation is described via the the following system


d


dt
u(t) = A((u))u(t), u(0) = u0,


where 1


uT =
(


[η(1)]T , [η(2)]T
)


and


η(1) =


(


e0,


e1


)


, η(2) =











x


e1
p








 ,


Further, let


A =


(


A(1) 0
0 A(2)


)


where


A(1) =


(


−k0x κ0 + k−0


k0x −κ0 − k−0


)


, A(2) =











−k0e0 k−0 0
k0e0 −κ0 − k−0 0
0 κ0 0








 . (3.2)


where k0, k−0, κ0 are given positive constants.
Now, assume e0(0) > 0, x(0) > 0, e1(0) = 0. We are going to show that this


system satisfies the following conditions


d


dt
e0(t) ≤ 0,


d


dt
e1(t) ≥ 0 (3.3)


d


dt
x(t) ≤ 0,


d


dt
p(t) ≥ 0 (3.4)


for all t ≥ 0.


1Superscript CT means the transposed of M ×N real valued matrix C.


198







It is easy to see that
e0(t) + e1(t) = c0


and
x(t) + p(t) + e1(t) = c1,


where c0 and c1 are positive reals independent of t ≥ 0. It follows that e1 is increasing.
To complete the proof of (3.3)-(3.4) it is enough to check that


p(t) = κ0


∫ t


0
e1(τ)dτ.


System such as the Michaelis-Menten model presented above is a typical represen-
tative of input-output models. Though such models are quite simple their behavior
may exhibit many very curios effects typical for rather complicated dynamical sys-
tems. By producing such effects the compartmental systems can be very helpful in
studying many systems whose fundamental variables are based on concept of (may
be deterministic) probability.


4. Some facts concerning input-output models


In this note we are going to examine input-output systems arising in Chemistry
and Cell Biology. An instructive example is described in Section 3.


Let A = A(x) be an N × N matrix whose elements are real numbers as rep-
resentatives of generally nonlinear functions of the variable vector x = x(t). To
study structured dynamical systems one has to understand the structure well. Be-
low we bring some basic concepts of the theory of nonnegative operators needed in
the further explanation.


A nonnegative linear operator A is called irreducible if it possesses the following
property: For any two vectors 0 6= x, 0 6= y, x, y ∈ E+ there exists a positive integer
p = p(x, y) such that the standard inner product (Apx, y) > 0.


We are going to investigate the following dynamical system


d


dt
u(t) = A(u(t))u(t), u(0) = u0. (4.1)


We can assume that there exists a unique solution to (4.1) u = u(t), u(t)T =
(u1, ..., uN) because, as a rule, the entries of matrix A = A(u) are sufficiently smooth.
We further assume that there exists a vector x̂ with all its components positive such
that


A′x̂ = (A(u))′x̂ = 0 (4.2)


where A′ denotes the dual operator of A with respect to the dual space E ′ assuming
E is the inner product space equipped with the standard inner product on E = RN .
Let X = X(t) be a solution to problem (4.1). We derive easily that


(X(t), x̂′) = (X(0), x̂′) = c. (4.3)
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In this way we arrived at the full concentration preservation law.
The operator-generator appearing in an input-output model is characterized by


the following property. Operator A(x) can be split as


A(x) = F (x)−D(x), F (x) ≥ 0, D(x) ≥ 0, xT = (x1, ..., xN), xj > 0, j = 1, ..., N.


It follows that


A(x)D(x)−1 = F (x)D(x)−1 − I, I = diag{1, ..., 1}.


according to (4.2) we get that


0 =
[


A(x)D(x)−1
]


′


x̂′ = [F (x)]′D(x)−1x̂′ − x̂′


implying that
B(x) ≡ D(x)−1F (x) (4.4)


satisfies
[B(x)]′x̂′ = x̂′. (4.5)


4.1. Remark Quite frequently the role of vector x̂′ is played by the constant vector
eT = (1, ..., 1). In such case, matrix B(x) is column stochastic. Consequently,
a solution to (4.1) is concentration i.e. a probability.


4.2. Remark One of the most important results concerned with the input-output
models is the boundedness of solutions to (4.1). It is a consequence of the full
concentration preservation law see [4] and [1].


5. A sufficient condition for non-oscillatory behavior


In this section we prove main result. To this purpose we need some deeper
knowledge of the operators on partially ordered spaces. In particular, an enormous
influence upon the behavior of the solutions has the substructuring of the matrix
representing the generator of solutions.


5.1. Proposition Let A = A(x) be the generator of the system of solutions to (4.1).
For any vector xT = (xT


(1), ..., x(p)), each x(j) possessing positive elements there exists
a permutation matrix U = U(x) such that


A(x) = U(x)
































A(0):(0) 0 0
A(1):(0) A(1):(1) 0


.


.


.


A(p):(0) 0 A(p):(p)
































U(x)−1, Aj:j = F(j):(k) −D(j)


where blocks F(j):(k), (j) 6= (k) are elementwise nonnegative and the diagonal blocks
F(j):(j)−D(j)(x) are square irreducible matrices, D(j):(j)(x) are diagonal with positive
elements.
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5.2. Remark In practical applications in Chemistry, Biology and other areas the
off-diagonal block and block A(0):(0) are either missing or they can be detected and
separated, though the separation procedures may be experimentally and numeri-
cally tedious. In our theoretical considerations the substochastic block A(0):(0), and
consequently all the off-diagonal blocks, will be absent. We thus assume that each
generator A(j):(j)(x) for each x positive generates a stochastic semigroup of operators.
This fact concerns the structure of the generator and formally it has nothing to do
with the solution itself.


Our model is thus block stochastic. In addition, we will assume that B(j)(x) – the
diagonal block of matrix B(x) defined in(4.4) – is independent of xr with r belonging
to the multi-index (j). E.g. the elements of matrix A(1) in (3.2) are independent
of e1 and e0.


Now, we can formulate and prove our result.


5.3. Theorem Assume the generator A = A(x) of Problem (4.1) satisfies the hy-
potheses of this and previous sections. In addition, let the derivatives


d


dt
xj(t), j = 1, ..., N,


do not change the signs within the interval 0 < t < +∞. Then system (4.2) is
nonoscillatory.


Proof. To prove the validity of the statement it is enough to recall that the
solution vector is uniformly norm bounded and apply a classical result saying that
a nonnegative monotone bounded continuous function on interval [0,+∞) satisfies


lim
t→+∞


x(t) = x(+∞) < +∞.


The proof is complete.


6. Concluding remarks


The condition discussed in this contribution is closely related to the conditions
formulated in [4]. Seemingly, none of these conditions is more general than the other
if applied to the input/output systems. On the other hand, the author suspects the
condition introduced in this paper as a candidate to be also necessary for nonoscil-
latory behavior of input/output systems.


It is interesting to note that the main result formulated in Theorem 5.3. can
formally be generalized to input/output systems in which the order is induced into
the models via generalized notion of nonnegativity in the spirit of [3]. In such a case
the generalized theory goes far beyond the frame of standard input/output systems.
In particular, the interpretation of the solutions to (4.2) as probabilities may be lost.
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Abstract


This study deals with a numerical solution of a 2D flows of a compressible viscous
fluids in a convergent channel for low inlet airflow velocity. Three governing systems –
Full system, Adiabatic system, Iso-energetic system based on the Navier-Stokes equa-
tions for laminar flow are tested. The numerical solution is realized by finite volume
method and the predictor-corrector MacCormack scheme with Jameson artificial vis-
cosity using a grid of quadrilateral cells. The unsteady grid of quadrilateral cells
is considered in the form of conservation laws using Arbitrary Lagrangian-Eulerian
method.


The numerical results, acquired from a developed program, are presented for inlet
velocity û∞ = 4.12ms−1 and Reynolds number Re = 4× 103.


1. Introduction


A current challenging question is a mathematical and physical description of
the mechanism for transforming the airflow energy in human vocal tract (convergent
channel) into the acoustic energy representing the voice source in humans. The voice
source signal travels from the glottis to the mouth, exciting the acoustic supraglottal
spaces, and becomes modified by acoustic resonance properties of the vocal tract [1].
The airflow coming from the lungs causes self-oscillations of the vocal folds, and the
glottis completely closes in normal phonation regimes, generating acoustic pressure
fluctuations. In this study, the movement of the boundary channel is known, har-
monically opening and nearly closing in the narrowest cross-section of the channel,
making the investigation of the airflow field in the glottal region possible. For phona-
tion of vowels, the frequencies of the vocal folds oscillations are in the region from
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cc 82 Hz for bass up to cc 1170 Hz for soprano in singing voice, the airflow velocity
in the trachea is approximately in the range of 0.3-5.2 ms−1 taking into account the
tracheal diameter in humans in the range 14.5-17.6 mm [2].


Acoustic wave propagation in the vocal tract is usually modeled from incom-
pressible flow models separately using linear acoustic perturbation theory, the wave
equation for the potential flow [2] or the Light-hill approach on sound generated
aerodynamically [3].


Goal of this work is numerical simulation of compressible viscous flow in 2D con-
vergent channel which involves attributes of real flow causing acoustic perturbations
as is “Coandă phenomenon” (the tendency of a fluid jet to be attracted to a nearby
surface), vortex convection and diffusion, jet flapping etc. along with lower call on
computer time, due to later extension in 3D channel flow.


2. Governing equations


The 2D system of Navier-Stokes equations has been used as mathematical model to
describe the unsteady laminar flow of the compressible viscous fluid in a domain.
The system of Navier-Stokes equations is expressed in non-dimensional conservative
form [4]:


∂W


∂t
+


∂F


∂x
+


∂G


∂y
=


1


Re


(


∂R


∂x
+


∂S


∂y


)


. (1)


W is the vector of conservative variables W = [ρ, ρu, ρv, e]T where ρ denotes density,
u and v are the components of the velocity vector and e is the total energy per unit
volume. F and G are the vectors of inviscid fluxes andR, S are the vectors of viscous
fluxes. The static pressure p in F and G is expressed by the state equation in the
form


p = (κ− 1)


[


e−
1


2
ρ
(


u2 + v2
)


]


, (2)


where κ = 1.4 is the ratio of specific heats.
The transformation to the non-dimensional form uses inflow parameters (marked


with the infinity subscript) as reference variables (dimensional variables are marked
with the hat): the speed of sound ĉ∞ = 343 ms−1, density ρ̂∞ = 1.225 kg m−3,
temperature T̂∞ = 293.15 K, dynamic viscosity η̂∞ = 18 · 10−6 Pa · s and a reference
length L̂r = 0.02 m.


General Reynolds number in (1) is computed from reference variables Re =
ρ̂∞ĉ∞L̂r/η̂∞. The non-dimensional dynamic viscosity in the dissipative terms is
a function of temperature in the form η = (T/T∞)3/4.


The system of equations (1) and (2) is so-called Full system. We present two other
governing systems of equations based on the Navier-Stokes equations (1), depend on
expression of state equation for static pressure p which is depend on energy flow
condition in the system. The second governing system is so-called Adiabatic system


p =
1


κ
ρκ, (3)
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and third governing system is so-called Iso-energetic system


p =
ρ


κ


[


1 +
κ− 1


2


(


û∞


ĉ∞


)2


−
κ− 1


2
(u2 + v2)


]


. (4)


Both last systems have the pressure expression independent on variable e and the
system (1) is reduced on the first three equations.


2.1. Computational domain and boundary conditions


The bounded computational domain D1 used for the numerical solution of flow
field in the channel is shown in Figure 1. The domain is symmetric channel, the
shape of which is inspired by the shape of the trachea (inlet part), vocal folds, false
vocal folds and supraglottal spaces (outlet part) in human vocal tract. The upper
and the lower boundaries are the channel walls. A part of the walls changes its
shape between the points A and B according to given harmonic function of time
and axial coordinate (see [5]). The gap width is the narrowest part of the channel
(in point C) and is oscillating between the minimum gmin = 0.4 mm and maximum
gmax = 2.8 mm.


Figure 1: The computational domain D1. L = 8 (160 mm), H = 0.8 (16 mm),
g = 0.08 (1.6 mm) - middle position.


The boundary conditions are considered in the following formulation:


1. Upstream conditions: u∞ = û∞


ĉ∞
; v∞ = 0; ρ∞ = 1; p∞ is extrapolated from D1.


2. Downstream conditions: p2 = 1/κ; (ρ, ρu, ρv) are extrapolated from D1.


3. Flow on the wall: (u, v) = (uwall, vwall) and furthermore for Full system ∂T
∂~n


= 0.
Vector (uwall, vwall) represents velocity of the channel walls and T = κp/ρ is
the temperature.


The general Reynolds number in (1) is multiply with non-dimensional value û∞


ĉ∞
H


represents kinematic viscosity scale and for computation of the real problem inlet
Reynolds number Re∞ = ρ̂∞ĉ∞


û∞


ĉ∞
HL̂r/η̂∞ is used.
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Figure 2: Finite volume Di,j and the dual volume V ′


k .


3. Numerical solution


The numerical solution uses finite volume method (FVM) in cell centered form on
the grid of quadrilateral cells, see e.g. [4]. In the time-changing domain, the integral
form of FVM is derived using Arbitrary Lagrangian-Eulerian (ALE) formulation.
The ALE method defines homomorphic mapping of the reference domain Dt=0 at
initial time t = 0 to a domain Dt at t > 0 [6]. The explicit predictor-corrector
MacCormack (MC) scheme in the domain with a moving grid of quadrilateral cells
is used. The scheme is 2nd order accurate in time and space [4]:


W
n+1/2
i,j =


µn
i,j


µn+1


i,j


W
n
i,j −


∆t


µn+1


i,j


4
∑


k=1


[


(


F̃
n
k − s1kW


n
k −


1


Re
R̃


n
k


)


∆yk


−


(


G̃
n
k − s2kW


n
k −


1


Re
S̃
n
k


)


∆xk


]


,


W
n+1


i,j =
µn
i,j


µn+1


i,j


1


2


(


W
n
i,j +W


n+1/2
i,j


)


−
∆t


2µn+1


i,j


4
∑


k=1


[(


F̃
n+1/2
k − s1kW


n+1/2
k


−
1


Re
R̃


n+1/2
k


)


∆yk −


(


G̃
n+1/2
k − s2kW


n+1/2
k −


1


Re
S̃
n+1/2
k


)


∆xk


]


, (5)


∆t = tn+1 − tn is the time step, µi,j =
∫ ∫


Di,j
dxdy is the volume of cell Di,j ,


∆x and ∆y are the steps of the grid in directions x and y, vector sk = (s1, s2)k
represents the speed of edge k (see Figure 2). The physical fluxes F, G, R, S


on the edge k of the cell Di,j are replaced by numerical fluxes (marked with tilde)
F̃, G̃, R̃, S̃ as approximations of the physical fluxes. The higher partial derivatives
of velocity and temperature in R̃k, S̃k are approximated using dual volumes V ′


k


(see [4]) as shown in Figure 2.
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Figure 3: Mesh in domain D1 - detail.


The last term used in the MC scheme is the Jameson artificial dissipation
AD(Wi,j)


n [7], then the vector of conservative variablesW can be computed at a new


time level Wn+1


i,j = W
n+1


i,j + AD(Wi,j)
n.


The grid of the channel have successive refinement cells near the wall (see Fig-
ure 3). The minimum cell size in y - direction is ∆ymin ≈ 1/


√
Re∞ to resolve capture


boundary layer effects.


4. Numerical results


The numerical results were obtained (using a specifically developed program) for
the following input data: uniform inflow ratio velocity û∞


ĉ∞
=0.012 (û∞=4.116 ms−1),


Reynolds number Re∞ = 4481 and atmospheric pressure p2 = 1/κ (p̂2 = 102942 Pa)
at the outlet. The computational domain contained 450 × 100 cells. The detail of
the mesh near the gap is shown in Figure 3.


The computation has been carried out in two stages. First, a numerical solution
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(a) Full system, ûmax


ĉ∞
= 0.177


(b) Adiabatic system, ûmax


ĉ∞
= 0.166


(c) Iso-energetic system, ûmax


ĉ∞
= 0.160


Figure 4: Initial conditions in domain D1 computed with the governing systems.
û∞


ĉ∞
= 0.012, Re∞ = 4481, p2 = 1/κ, mesh: 450 × 100. Results are mapped by


iso-lines of ratio velocity and by streamlines.


is obtained, when the channel between points A and B has a rigid wall fixed in the
middle position of the gap width (see Fig. 1). Then this solution is used as the
initial condition for the unsteady simulation.


Figure 4 shows initial conditions of the flows in domain D1 computed with the
governing systems. The pictures display non-symmetric flow developed behind the
narrowest channel cross-section. Figure 5 shows the convergences to the steady state
solution computed using the L2 norm of momentum residuals (ρu). The convergence
depends on coefficients of artificial dissipation AD(Wi,j)


n making strong or weak
numerical viscosity of the scheme and on governing system. The graphs indicates
the non-stationary solution which is caused probably by eddies separated behind gap
and floating away. Numerical solution computed with Iso-energetic system has the
worst residuals.


Figures 6, 7, 8 show the unsteady flow fields computed with the governing systems
in domain D1. Simulation is captured in five time instants during one vibration
period (in the fourth cycle of the wall oscillation). The highest absolute maximum
velocity ratio during one vibration period is computed with Full system (Fig. 6)
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Figure 5: Convergence to the steady state solution. Computed in domain D1 with:
A) Full system, B) Adiabatic system, C) Iso-energetic system.


where ûmax


ĉ∞
= 0.535 (ûmax = 183.5 ms−1) at g=1.002 mm (opening phase). Adiabatic


system and Iso-energetic system (Figs. 7, 8) have same absolute maximum velocity
ratio during one vibration period ûmax


ĉ∞
= 0.199 (ûmax = 68.2 ms−1) at g = 0.993 mm


and g = 1.09 mm respectively, during closing phase.


5. Discussion and conclusions


Three governing systems for flow of viscous compressible fluid based on Navier-
Stokes equations for laminar flow are tested. Numerical solutions showed similar
pattern of the flow fields computed with Full, Adiabatic and Iso-energetic systems.
In unsteady simulations was possible to detect a “Coandă phenomenon” and large-
scale vortices in the flow field patterns. The direction of the jet is independent on
the coarseness of mesh but depends on the geometry of the channel, on the type of
mesh in the domain, on the computational scheme [8] and on the governing system of
flow. A similar generation of large-scale vortices, vortex convection and diffusion, jet
flapping, and general flow patterns were experimentally obtained in physical models
of the vocal folds by using Particle Image Velocimetry method in [9].


In next time we consider analyze spectrum of acoustic pressure found near the
outlet of domain D1 and to compute the similar case by model of incompressible
Navier-Stokes equations and to use extension to 3D case.
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(a) t = 30 ms, g = 1.6 mm, ûmax


ĉ∞


= 0.162 (55.6 ms−1)


(b) t = 32.5 ms, g = 0.4 mm, ûmax


ĉ∞


= 0.236 (80.9 ms−1)


(c) t = 35 ms, g = 1.6 mm, ûmax


ĉ∞


= 0.370 (126.9 ms−1)


(d) t = 37.5 ms, g = 2.8 mm, ûmax


ĉ∞


= 0.097 (33.3 ms−1)


(e) t = 40 ms, g = 1.6 mm, ûmax


ĉ∞


= 0.162 (55.6 ms−1)


Figure 6: The unsteady numerical solution of the airflow in D1 computed with Full
system - f̂ = 100 Hz, û∞


ĉ∞
= 0.012, Re∞ = 4481, p2 = 1/κ, 450 × 100 cells. Data


computed during the fourth oscillation cycle. Results are mapped by iso-lines of
velocity ratio and by streamlines.
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(a) t = 30 ms, g = 1.6 mm, ûmax


ĉ∞


= 0.167 (57.2 ms−1)


(b) t = 32.5 ms, g = 0.4 mm, ûmax


ĉ∞


= 0.032 (10.9 ms−1)


(c) t = 35 ms, g = 1.6 mm, ûmax


ĉ∞


= 0.171 (58.6 ms−1)


(d) t = 37.5 ms, g = 2.8 mm, ûmax


ĉ∞


= 0.093 (31.9 ms−1)


(e) t = 40 ms, g = 1.6 mm, ûmax


ĉ∞


= 0.167 (57.2 ms−1)


Figure 7: The unsteady numerical solution of the airflow in D1 computed with
Adiabatic system - f̂ = 100 Hz, û∞


ĉ∞
= 0.012, Re∞ = 4481, p2 = 1/κ, 450× 100 cells.


Data computed during the fourth oscillation cycle. Results are mapped by iso-lines
of velocity ratio and by streamlines.
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(a) t = 30 ms, g = 1.6 mm, ûmax


ĉ∞


= 0.163 (55.9 ms−1)


(b) t = 32.5 ms, g = 0.4 mm, ûmax


ĉ∞


= 0.030 (10.3 ms−1)


(c) t = 35 ms, g = 1.6 mm, ûmax


ĉ∞


= 0.159 (54.5 ms−1)


(d) t = 37.5 ms, g = 2.8 mm, ûmax


ĉ∞


= 0.097 (33.3 ms−1)


(e) t = 40 ms, g = 1.6 mm, ûmax


ĉ∞


= 0.163 (55.9 ms−1)


Figure 8: The unsteady numerical solution of the airflow in D1 computed with Iso-
energetic system - f̂ = 100 Hz, û∞


ĉ∞
= 0.012, Re∞ = 4481, p2 = 1/κ, 450× 100 cells.


Data computed during the fourth oscillation cycle. Results are mapped by iso-lines
of velocity ratio and by streamlines.
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[6] Honzátko, R., Horáček, J., and Kozel, K.: Solution of inviscid incompressible
flow over a vibrating profile. In: M. Beneš, M. Kimura, and T. Nataki (Eds.),
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Abstract


Selected applications of the algebraic classification of tensors on Lorentzian man-
ifolds of arbitrary dimension are discussed. We clarify some aspects of the relation-
ship between invariants of tensors and their algebraic class, discuss generalization of
Newman-Penrose and Geroch-Held-Penrose formalisms to arbitrary dimension and
study an application of the algebraic classification to the case of quadratic gravity.


1. Introduction


This contribution focuses on selected applications of the algebraic classification
of tensors on Lorentzian manifolds of arbitrary dimension introduced in [2, 15] and
conveniently summarized in paper [20] in this volume.


The algebraic classification of tensors in higher dimensions was originally devel-
oped in the context of studying invariants of the Weyl tensor and naturally first
applications were in this area [3]. However, this research is still in development and
very recently new important insights were obtained in [12]. Therefore, in section 2
we overview the relationship between the algebraic class of a tensor and its polyno-
mial invariants. In this context we also discuss VSI spacetimes - spacetimes with
vanishing curvature invariants.


In section 3, we focus on the generalization of the Newman-Penrose (NP) formal-
ism and the Geroch-Held-Penrose (GHP) formalism to the case of arbitrary dimen-
sion [19, 16, 8]. The main goal of this section is to show how assuming the spacetime
to be algebraically special often leads to a dramatic simplification of PDEs of this
formalism. To illustrate this point we discuss two problems: i) we solve the Sachs
equation for non-degenerate algebraically special spacetimes and ii) we use GHP
formalism to prove a proposition about type N Einstein spacetimes.


In section 4, we show how assuming the Weyl tensor to belong to certain alge-
braically special classes leads to a considerable simplification of the field equations of
a particular generalization of the Einstein theory, so called quadratic gravity. This
approach allows us to identify a new class of exact solutions of this theory.
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2. Invariants of a tensor


As pointed out in [2, 15], the algebraic classification based on the alignment theory
developed there can be applied to an arbitrary tensor on a Lorentzian manifold.
Using notation of [12], the tensor T can be decomposed according to boost weight
of its components


T =
∑


b


(T )b (1)


with (T )b being components of boost weight b. By definition, T is said to be of type
II if there exists a frame for which all positive boost weight components vanish and
type III if only negative boost weight components are non-zero.


Some information encoded in the tensor T can be invariantly expressed in terms
of its polynomial invariants. For a rank two tensor, examples of such invariants are
its trace T a


a or TabT
ab. Note that in the case of the Riemannian signature TabT


ab


is essentially a sum of squares of all components of T and is thus non-vanishing.
In the Lorentzian case TabT


ab can vanish for (special) non-trivial T but in principle
some more complicated invariants, such as TabT


acT b
c, could survive. What are the


necessary and sufficient conditions for vanishing of all polynomial invariants of T ?
Very recently the following proposition (discussed previously as the algebraic VSI


conjecture in [3]) was proven in [12]


Proposition 1. All polynomial invariants of a tensor T of arbitrary rank on
a Lorentzian manifold of arbitrary dimension vanish if and only if T is of type III.


Thus clearly a tensor T of type III contains more information than its polyno-
mial invariants. One can then ask under what conditions polynomial invariants of
a tensor T contain less information than T or in other words when T is not charac-
terized by its invariants. In terms of the algebraic classification the answer is again
surprisingly simple [12].


Proposition 2. Assume that a tensor T is not characterized by its polynomial in-
variants. Then it is of type II or more special.


The elegant proof [12] of this proposition (in fact of a more general statement
applying to invariants of a set of tensors) combines the use of invariant theory, group
theory and real analysis.


Definition 1. Curvature invariant of order p is a polynomial invariant constructed
from metric, curvature tensors (the Riemann, Ricci, and Weyl tensors) and their
covariant derivatives up to order p.


Definition 2. We say that a manifold M with a metric of arbitrary signature is
VSI (vanishing scalar invariants) if all curvature invariants of all orders vanish at
all points of M .
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The VSI condition is obviously very restrictive and in the case of positive definite
metric (the Riemannian case) the only such manifold is a flat space. However, in the
Lorentzian case, the set of VSI manifolds is non-trivial.


Theorem 1. VSI Theorem: A Lorentzian manifold of arbitrary dimension is VSI if
and only if the following two conditions are satisfied:
(A) The spacetime possesses a non-expanding, twist-free, shear-free, geodesic null
congruence and consequently belongs to the Kundt class.
(B) Relative to the above null congruence, all curvature tensors are of algebraic
type III or more special.


In four dimensions this theorem has been proven in [18]. In [3] it has been proven
that conditions (A) and (B) imply VSI in arbitrary dimension. The part of the proof
showing that VSI property implies (A) and (B) has been given there only under the
assumption that the algebraic VSI conjecture holds1. Thanks to the Proposition 1.
the proof of the VSI theorem is now complete.


Motivated by the VSI theorem, various authors have studied Kundt spacetimes
in arbitrary dimension and explicit metrics of Kundt type III and type N spacetimes
are now known (see e.g. [1]).


Apart from differential geometry [10], VSI spacetimes are of interest in various
physical theories, such as general relativity [9] and supergravity [6] or when studying
quantum corrections of these theories [5]. Possible applications of VSI spacetimes in
string theory are also discussed in [4].


Recently VSI spacetimes with more general signatures were studied in [13].


3. Generalization of NP and GHP formalisms to higher dimensions


In four dimensions Newman-Penrose formalism and Geroch-Held-Penrose for-
malism are essential tools for finding exact solutions of the Einstein field equations
and analyzing their properties. Using the higher dimensional classification of the
Weyl tensor, these methods were generalized to arbitrary dimension in [19, 16] (NP)
and [8] (GHP).


In the NP (GHP) formalism, Einstein equations can be rewritten as a particular
set of first order partial differential equations. These equations are considerably
simplified when searching for algebraically special solutions. In four dimensions,
this approach has led to discovery of many exact solutions of the Einstein equations
including the famous Kerr solution describing gravitational field of a rotating black
hole.


In higher dimensions, a similar simplification for algebraically special solutions
occurs, however, the search for new exact solutions is still in the initial phase. We
will therefore illustrate advantages of the NP (GHP) formalism on a few selected
equations from the complete set of PDEs.


1An omission in the original proof that VSI imply (A) and (B) has been clarified in [12].
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We will use a null frame consisting of two null vectors ℓ = m(1) = m(0) and
n = m(0) = m(1) and n− 2 spacelike vectors m(i) = m(i) obeying


ℓaℓa = nana = 0, ℓana = 1, m(i)am(j)
a = δij , a = 0 . . . n− 1 (2)


with i, j, k = 2 . . . n− 1. Thus the metric can be expressed as


gab = 2ℓ(anb) + δijm
(i)
a m


(j)
b . (3)


Let us denote covariant derivatives of the basis vectors as


Lµν = ∇νℓµ, Nµν = ∇νnµ,
i


Mµν = ∇νm(i)µ. (4)


The projections onto the basis are the scalars Lab, Nab,
i


Mab. As a consequence of (2),
they are subject to the following conditions


N0a + L1a = 0,
i


M 0a + Lia = 0,
i


M 1a +Nia = 0,
i


M ja +
j


M ia = 0, (5)


L0a = N1a =
i


M ia = 0. (6)


Vector field ℓ is tangent to a null geodesic if and only if κi ≡ Li0 = 0 and in such a case
one can always choose an affine parameterization with L10 = 0. Then expansion,
shear and twist of the congruence are determined by trace, trace-free symmetric and
antisymmetric parts of ρij ≡ Lij , respectively.


Let us also introduce covariant derivatives along the frame vectors by


D ≡ ℓa∇a, △ ≡ na∇a, δi ≡ ma
(i)∇a. (7)


It is often more convenient to introduce compact GHP derivative operators þ and k


which still obey the Leibnitz rule. The full definition of these operators can be found
in [8]. Here we just give few illustrative examples


þρij = Dρij − L10ρij +
k


M i0ρkj +
k


M j0ρik, (8)


þΦij = DΦij +
s


M i0Φsj +
s


M j0Φis, (9)


þΨijk = DΨijk + L10Ψijk +
s


M i0Ψsjk +
s


M j0Ψisk +
s


Mk0Ψijs, (10)


þΩ′
ij = DΩ′


ij + 2L10Ω
′
ij + 2Ψ(i|s


s


M |j)0. (11)


3.1. Ricci equations


Contractions of the Ricci identity va;bc−va;cb = Rsabcv
s with various combinations


of the frame vectors and with va being either ℓa, na or ma
(i) lead to a set of first order


differential equations which are in full given in [16].
The point of this section is to illustrate how a clever choice of a frame for Einstein


spacetimes admitting a Weyl aligned null direction (WAND) leads to a considerable
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simplification of these equations. Here let us discuss only the case of the Sachs
equation (12) which can be set to a strikingly simple form (14).


The Sachs equation in full generality reads


DLij − δjLi0 = L10Lij − Li0(2L1j +Nj0)− Li1Lj0


+2Lk[0|


k


M i|j] − Lik(Lkj +
k


M j0)− C0i0j − 1
n−2


R00δij. (12)


By choosing a frame parallelly propagated along the geodetic congruence ℓ it reduces
to


DLij = −LikLkj − C0i0j − 1
n−2


R00δij (13)


and for Einstein spaces of type I (or more special algebraic types) it becomes


DLij = −LikLkj, in matrix form: DL = −L2. (14)


For invertible matrix L, the Sachs equation implies [17]


DL−1 = I ⇒ L−1 = rI− b, Db = 0. (15)


where I is the identity matrix, r is an affine parameter along the geodetic congruence ℓ
and b is a matrix constant along each geodetic (and thus independent on r).


Note that
L−1
[ij] = −b[ij], (16)


and thus L[ij] = 0 ⇔ b[ij] = 0. Therefore the antisymmetric part of b is responsible
for twist.


3.2. Bianchi equations


For Einstein spacetimes, the Ricci tensor is proportional to the metric and con-
sequently ∇ρRµν = 0. Therefore Bianchi identity ∇[τ |Rµν|ρσ] = 0 implies that


∇[τ |Cµν|ρσ] = 0. (17)


The frame components of these equations lead to a set of complicated first order
PDEs which can be found in [8]. These equations can be greatly simplified by
assuming algebraically special spacetimes.


Let us further discuss the simplest non-trivial case, type N Einstein spacetimes, to
provide an illustration of the use of NP/GHP formalism. The following proposition
for the Ricci-flat case was proven in [19]. Considerably shorter proof applying also
to Einstein spaces was given in [8]. Hereafter we thus follow [8].


Proposition 3. The multiple WAND ℓ of type N Einstein spacetime is necessarily
geodetic and the optical matrix ρ can be cast to the form


ρ =








1
2


(


ρ a
−a ρ


)


0


0 0





 (18)
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Proof. In a type N Einstein spacetime the only non-vanishing components of the
Weyl tensor are determined by a symmetric traceless matrix Ω′


ij . Therefore Bianchi
equation (B5) from [8]


þ′Ψijk − 2k[j|Φi|k] = 2(Ψ′
[j|δil −Ψ′


[j|il)ρl|k] + (2Φi[jδk]l − 2δilΦ
A
jk − Φiljk)τl


+2(Ψiδ[j|l −Ψi[j|l)ρ
′
l|k] + 2Ωi[jκ


′
k], (19)


implies
Ω′


i[jκk] = 0, (20)


where the square brackets denote antisymmetrization. By tracing (20) over i and k
we obtain


Ω′
ijκi = 0, (21)


while by multiplying (20) by Ω′
ik and using (20) we arrive to


(Ω′
ikΩ


′
ik)κj = 0. (22)


Since for type N Ω′
ik possesses at least one non-vanishing component we conclude


that κj = 0 and thus the multiple WAND for Einstein type N spacetimes is always
geodetic.


Now the remaining Bianchi equations [8] imply


þΩ′
ij = −Ω′


ikρkj, (23)


Ω′
i[jρkl] = 0, (24)


Ω′
i[k|ρj|l] = Ω′


j[k|ρi|l]. (25)


Let us denote symmetric and antisymmetric parts of ρ as S and A, respectively.
Tracing (24) and (25) over i and k leads to


Ω′A+AΩ′ = 0, (26)


Ω′ρ+ ρΩ′ = (trρ)Ω′, (27)


respectively. Using (26), eq. (27) reduces to


Ω′S+ SΩ′ = (trS)Ω′. (28)


The antisymmetric part of (23) reads


0 = −[Ω′,S]− (Ω′A+AΩ′), (29)


which, together with (26), gives


[Ω′,S] = 0. (30)


This allows us to use rotations of the m(i) to diagonalize simultaneously both Ω′


and S.
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Let us denote the number of non-vanishing eigenvalues ofΩ′ by N . We can shuffle
the vectors m(i) so that


Ω′ = diag(ψ(2), ..., ψ(N+1), 0, ..., 0), S = diag(s(2), ..., s(n−1)), (31)


with all the ψ(α) being non-zero2. Note that for type N spacetime N ≥ 1. Substitut-
ing (31) into (28) leads to


ψ(i)s(i) =
1


2
ψ(i)(trS) (no summation over i) (32)


for all i and thus


s(α) =
trS


2
for α = 2, ..., N + 1. (33)


The αI component of (26) implies that AIα = 0 = AαI , and thus ρ is block diagonal
with blocks of size N and n − 2 − N . The ijkl = IαJβ component of the Bianchi
equation (25) implies Ω′


αβρIJ = 0 and therefore ρIJ = 0.
So far we have shown that


ρ =


(


ρ


2
1N +AN 0


0 0


)


, (34)


where trS = ρ, 1N is the N×N identity matrix, and AN is an antisymmetric N×N
matix. The trace of the above equation leads to


ρ = Nρ/2 (35)


and thus either (i) N = 2 or (ii) ρ = 0.
For N = 2 we have shown that ρ must be of the form (18) for some a.
In the second case (ii) vanishing of ρ implies S = 0. The trace of the Sachs


equation reads þ(trS) = −tr(S2) − tr(A2). Consequently tr(A2) = −AijAij also
vanishes, implying A = 0. Such spacetime is thus Kundt. 2


4. Quadratic gravity


In this section we would like to follow [14] to point out that field equations of
various theories generalizing the Einstein gravity can be considerably simplified by
choosing sufficiently special algebraic type of the metric.


In perturbative quantum gravity, corrections have to be added to the Einstein
action. Since we require coordinate invariance, these corrections consist of various
curvature invariants. One important class of such modified gravities is quadratic
gravity whose action contains general quadratic terms in curvature [7]


S =


∫


dnx
√
−g


(


1


κ
(R− 2Λ0) + αR2 + βR2


ab + γ
(


R2
abcd − 4R2


ab +R2
)


)


. (36)


2From now on indices α, β, ... range over 2, ..., N + 1 and I, J, ... range over N + 2, ..., n− 1.
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The action (36) leads to vacuum quadratic gravity field equations [11]


1


κ


(


Rab −
1


2
Rgab + Λ0gab


)


+ 2αR


(


Rab−
1


4
Rgab


)


+ (2α + β) (gab∇c∇c−∇a∇b)R


+2γ


(


RRab − 2RacbdR
cd +RacdeR


cde
b − 2RacR


c
b − 1


4
gab


(


R2
cdef − 4R2


cd +R2
)


)


+β∇c∇c


(


Rab −
1


2
Rgab


)


+ 2β


(


Racbd −
1


4
gabRcd


)


Rcd = 0. (37)


Obviously these fourth order non-linear PDEs are far more complicated than
Einstein equations


Rab =
2Λ


n− 2
gab (38)


and it seems hopeless to attempt to solve this system without starting with some
simplifying assumptions.


If we restrict our interest to Einstein spacetimes obeying (38), the equations of
quadratic gravity reduce to [14]


Bgab − γ


(


C cde
a Cbcde −


1


4
gabC


cdefCcdef


)


= 0, (39)


where


B =
Λ− Λ0


2κ
+ Λ2


(


(n− 4)


(n− 2)2
(nα + β) +


(n− 3)(n− 4)


(n− 2)(n− 1)
γ


)


. (40)


Note that in the above equations we have used


Rabcd = Cabcd +
2


n− 2
(ga[cRd]b − gb[cRd]a)−


2


(n− 1)(n− 2)
Rga[cgd]b (41)


to express the Riemann tensor in terms of the Weyl and Ricci tensors and the scalar
curvature R = 2n


n−2
Λ.


It can be shown that for type N spacetimes


C cde
a Cbcde = CcdefCcdef = 0 (42)


and thus in this case eqs. (39), (40) reduce to a simple algebraic constraint relating
the effective cosmological constant Λ with parameters of the quadratic gravity α, β,
γ, κ, Λ0. We thus arrive at


Proposition 4. In arbitrary dimension all Weyl type N Einstein spacetimes with
cosmological constant Λ (chosen to obey B = 0) are exact solutions of quadratic
gravity (37).
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Since many type N Einstein spacetimes are known, we obtained “for free” a rich
class of exact solutions of quadratic gravity.


These results may be partially generalized to the case of type III spacetimes or
to the case of type N spacetimes which are not Einstein but admit Ricci tensor of
the form


Rab =
2Λ


n− 2
gab + Φℓaℓb. (43)


See [14] for further details.
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[19] Pravda, V., Pravdová, A., Coley, A., and Milson, R.: Bianchi identities in higher
dimensions. Class. Quantum Grav. 21 (2004), 2873–2897.
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Abstract


Alignment classification of tensors on Lorentzian manifolds of arbitrary dimension


is summarized. This classification scheme is then applied to the case of the Weyl


tensor and it is shown that in four dimensions it is equivalent to the well known


Petrov classification. The approaches using Bel-Debever criteria and principal null


directions of the superenergy tensor are also discussed.


1. Introduction


The Einstein equations in an n-dimensional spacetime represent a set of second
order non-linear PDEs for n(n + 1)/2 unknown components of metric gab. In full
generality it is hopeless to search for exact solutions of the system. However, there are
approaches seeking to reduce its compexity. First, obvious method is to assume some
kind of continuous symmetry (for example axial symmetry or staticity). Another
approach, less known outside of the community studying Einstein field equations
and Lorentzian differential geometry, is to make simplifying assumptions about the
Weyl tensor (consisting of partial derivatives of the metric up to the second order)
instead of assuming special properties of the metric itself. This approach is based on
the algebraic (Petrov-Penrose) classification developed by Petrov [22], Debever [6],
Penrose [20] and others and on the Newman-Penrose formalism [17] and it subse-
quently led to a discovery of many new exact solutions of the Einstein field equations,
including the Kerr metric describing gravitational field of a rotating black hole.


Since 1980s there is a growing interest in theoretical physics and differential
geometry in higher dimensional geometries with Lorentzian signature. Thus obviously
it would be of great interest to have some sort of algebraic classification in higher di-
mensions than four. In four dimensions there are several equivalent methods leading
to the Petrov-Penrose classification. This classification can be obtained using eigen-
bivectors [22], [1], using number and multiplicity of principal null directions (PNDs)
of the Weyl tensor [6], using factorization of the symmetric Weyl spinor [20] or using
principal directions of the Bel-Robinson tensor (see e.g. [2], [21]). In general these
methods do not give equivalent results in higher dimensions.
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Using alignment theory [15], [5] one arrives to a classification scheme valid in
arbitrary dimension n ≥ 4 which is equivalent to the Petrov-Penrose classification
for n = 4. It turns out that similarly as in the four-dimensional case most of the
known exact solutions to the Einstein field equations are algebraically special.


In this contribution we will focus on introducing the higher dimensional clas-
sification using alignment theory (Section 2), we briefly summarize two equivalent
approaches using Bel-Debever conditions and Bel-Robinson tensor (Section 3) and
we briefly discuss classification of several known metrics (Section 4). Various appli-
cations of this classification are discussed in Ref. [24] in this volume.


2. Weyl aligned null directions and their multiplicity


In a tangent space of an n-dimensional Lorentzian manifold we choose a null
frame with two null vectors ℓ = m


(1) = m(0), n = m
(0) = m(1) and n− 2 spacelike


vectors m(i) = m(i) (i, j, k = 2 . . . n− 1), obeying


ℓaℓa = nana = 0, ℓana = 1, m(i)am(j)
a = δij, a = 0 . . . n− 1. (2.1)


The metric then takes the form


gab = 2ℓ(anb) + δijm
(i)
a m


(j)
b . (2.2)


Obviously, such frame is not unique - one can still perform Lorentz transfor-
mations. The group of ortochronous Lorentz transformations is generated by null
rotations of one of the null frame vectors about the other one, e.g.


ℓ̂ = ℓ + zim
(i) −


1


2
zizi n, n̂ = n, m̂


(i) = m
(i) − zin, (2.3)


with parameters zi, spins defined by an orthogonal matrix X i
j


ℓ̂ = ℓ, n̂ = n, m̂
(i) = X i


jm
(j) (2.4)


and boosts with a parameter λ


ℓ̂ = λℓ, n̂ = λ−1
n, m̂


(i) = m
(i). (2.5)


Let us now present a short summary of useful definitions based on [15], [5].


Definition 1. A quantity q has a boost weight bw if it transforms under a boost
according to


q̂ = λbwq. (2.6)


Thus for frame components of a tensor T we obtain their boost weight


T̂a...b ≡ T (m̂(a), . . . m̂(b)) = λbwT (a...b)Ta...b, (2.7)


where bwT (a . . . b) can be conveniently expressed as number of 0’s minus number of
1’s in frame component indices.
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Definition 2. Boost order of a tensor T with respect to the null frame ℓ, n, m(i)


is the maximum boost weight of its frame components


boT = max {bwT (a . . . b) | Ta...b 6= 0} . (2.8)


Proposition 1. Let ℓ, n, m(i) and ℓ̂, n̂, m̂(i) be two null frames with ℓ and ℓ̂ being
scalar multiples of each other. Then the boost order of a given tensor is the same
relative to both frames.


Thus boost order of a tensor depends only on the choice of null direction 〈ℓ〉 and we
will denote it boT (ℓ). Note that for components for which bwT (a . . . b) = boT (ℓ) it
follows


T̂ ≡ T (m̂(a) . . . m̂(b)) = T (m(a) . . .m(b)). (2.9)


Definition 3. Let T be a tensor and let bmax(T ) denote the maximum value of
boT (ℓ) taken over all null vectors ℓ


bmax(T ) = max{boT (ℓ) | ∀ null 〈ℓ〉}. (2.10)


We say that a vector ℓ is aligned null direction (AND) of a tensor T whenever
boT (ℓ) < bmax(T ) and we will call integer bmax(T )− boT (ℓ) its multiplicity.


Definition 4. We will call a quantity


bmax(T )− bmin(T ), (2.11)


where
bmin(T ) = min{boT (ℓ) | ∀ null 〈ℓ〉}, (2.12)


principal alignment type (PAT) of a tensor T .
Choosing ℓ with maximal multiplicity (which is equal to bmax(T ) − bmin(T )), we


define secondary alignment type, SAT, to be


bmax(T )− b̃min(T ), (2.13)


with
b̃min(T ) = min{boT (n) | ∀ null 〈n〉 except 〈ℓ〉}. (2.14)


Definition 5. We can classify an arbitrary tensor according to its alignment type
consisting of two integers (PAT, SAT).


To determine an alignment type of a tensor one has to project the tensor T on
the null frame and sort its components by their boost weight


T =
∑


b


(T )(b), (2.15)
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where


(T )(b) =
∑


Ta...bm
(a) . . .m(b), bwT (a . . . b) = b. (2.16)


Then using null rotations (2.3) about ℓ and n one has to set as many leading and
trailing terms in (2.15) as possible to zero.


For arbitrary tensor in arbitrary dimension we define (in part we employ defini-
tions of [12], [11]):


Definition 6. A tensor T is of


• type G if for all frames some maximal boost-weight components do not vanish,
i.e. (T )(bmax(T )) 6= 0,


• type I if there exists a frame such that maximal boost-weight components do
vanish, i.e. (T )(bmax(T )) = 0,


• type II if there exists a frame such that all positive boost-weight components
vanish, i.e. (T )(b>0) = 0 and T =


∑


b≤0(T )(b),


• type D if there exists a frame such that T has only zero boost-weight compo-
nents, T = (T )(0),


• type III if there exists a frame such that T has only negative boost-weight com-
ponents, i.e. (T )(b≥0) = 0 and T =


∑


b<0(T )(b),


• type N if there exists a frame such that T has only components of boost-weight
−bmax(T ), i.e. T = (T )(−bmax(T )).


Note that according to this definition, type N is a subcase of type III which is
again a subcase of type II, etc. Sometimes, the term pure type II is used meaning
a spacetime of type II which is not of type III, etc.


Let us illustrate these definitions on some examples:


• A vector v can be decomposed as


v = v0n+ vim
(i) + v1ℓ. (2.17)


It has bmax(v) = 1. There are three classes of vectors:


1. Timelike vector (vava < 0) is of alignment type (0, 0) (type G):
In this case v0 cannot be set to zero by null rotations, i.e. for all ℓ


bov(ℓ) = 1, there are no ANDs.


2. Spacelike vector (vava > 0) is of alignment type (1, 1) (type D):
There exist ℓ and n such that v0 = 0 = v1, i.e. with bov(ℓ) = 0 = bov(n),
both ANDs are of multiplicity 1.
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3. Null vector (vava = 0) is of alignment type (2, 0) (type N):
There exists ℓ (ℓ ‖ v) such that v0 = 0 = vi, i.e. with bov(ℓ) = −1 and
multiplicity is 2.


• A bivector (an antisymmetric tensor of rank two), F , has in general decompo-
sition


F = (F )(+1) + (F )(0) + (F )(−1), (2.18)


or equivalently


Fab =


1
︷ ︸︸ ︷


2F0i n[am
i
b]+


0
︷ ︸︸ ︷


2F01 n[aℓb] + Fij m
i
[am


j
b] +


−1
︷ ︸︸ ︷


2F1i ℓ[am
i
b] . (2.19)


Thus bmax(F ) = 1.


There are cases


1. Case (0, 0) - type G: there are no ANDs.


2. Case (1, 0) - type II: this occurs when F0i can be set to zero using null
rotations, ℓ is AND of multiplicity 1.


3. Case (1, 1) - type D: this occurs when F0i, F1i can be set to zero, both
ANDs ℓ and n are of multiplicity 1.


4. Case (2, 0) - type N: all components F0i, F01, Fij can be set to zero, ℓ is
AND of multiplicity 2.


In even dimensions, there always exists an AND and thus a bivector is of type II
or more special (see Prop. 4.4 in [7]).


In four dimensions, only the following two cases exist


1. Generic case (1, 1) with canonical form Fab = λm2
[am


3
b] + µn[aℓb].


2. Special case (2, 0) with canonical form Fab = λℓ[am
2
b].


• In this paper, we are mainly interested in the algebraic classification of the
Weyl tensor with the following symmetries


Cabcd = C{abcd} ≡
1
2
(C[ab][cd] + C[cd][ab]), Cc


acb = 0, Ca[bcd] = 0. (2.20)


Decomposing the Weyl tensor in its frame components we obtain:


C = (C)(+2) + (C)(+1) + (C)(0) + (C)(−1) + (C)(−2), (2.21)


228







or more specifically


Cabcd =


boost weight 2 − type G


︷ ︸︸ ︷


4C0i0j n{am
(i)
b ncm


(j)
d }+


1, I


︷ ︸︸ ︷


8C010i n{albncm
(i)
d } + 4C0ijk n{am


(i)
b m(j)


c m
(k)
d }


+4C0101 n{albncl d } + 4C01ij n{albm
(i)
c m


(j)
d }


+8C0i1j n{am
(i)
b lcm


(j)
d } + Cijkl m


(i)
{am


(j)
b m


(k)
c m


(l)
d }









0, II,D (2.22)


+


−1, III


︷ ︸︸ ︷


8C101i l{anblcm
(i)
d } + 4C1ijk l{am


(i)
b m(j)


c m
(k)
d }+


−2, N


︷ ︸︸ ︷


4C1i1j l{am
(i)
b lcm


(j)
d },


so e.g. components C0i0j = Cabcdℓ
amb


(i)ℓ
cmd


(j) have boost weight bwC(0i0j) = 2.


The Weyl tensor has bmax(C) = 2.


For Weyl components, we will follow the notation of [8] which is together with
additional identities (2.20) summarized in table 1.


bw Compt. Notation Identities
2 C0i0j Ωij Ωij = Ωji, Ωii = 0
1 C0ijk Ψijk Ψijk = −Ψikj, Ψ[ijk] = 0


C010i Ψi Ψi = Ψkik.
0 Cijkl Φijkl Φijkl = Φ[ij][kl] = Φklij , Φi[jkl] = 0


C0i1j Φij Φ(ij) ≡ ΦS
ij = −1


2
Φikjk


C01ij 2ΦA
ij ΦA


ij ≡ Φ[ij]


C0101 Φ Φ = Φii


-1 C1ijk Ψ′
ijk Ψ′


ijk = −Ψ′
ikj, Ψ


′
[ijk] = 0


C101i Ψ′
i Ψ′


i = Ψ′
kik.


-2 C1i1j Ω′
ij Ω′


ij = Ω′
ji, Ω


′
ii = 0


Table 1: Decomposition of the Weyl tensor by boost weight bw for dimensions n > 4
(c.f. Ref. [5]).


We classify the Weyl tensor according to the (non)existence of Weyl aligned
null directions (WANDs) and their multiplicity. Note that a generic Weyl
tensor for n ≥ 5 does not possess any WAND [15]. All possible algebraical types
are given in the table 2 (for the conformally flat case, type O, the Weyl tensor
vanishes). Alignment type classification of the Weyl tensor in four dimensions
is equivalent to the Petrov classification and WANDs coincide with principal
null directions (PNDs) of the Weyl tensor. As in four dimensions the Weyl
tensor is called algebraically special if it is of type II or more special.


Let us briefly summarize further refinement [5, 4] of the alignment type classi-
fication.
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n >4 dimensions 4 dimensions
Petrov type alignment type Petrov type


G (0,0)
I (1,0)
Ii (1,1) I
II (2,0)
IIi (2,1) II
D (2,2) D
III (3,0)
IIIi (3,1) III
N (4,0) N


Table 2: Possible Petrov/alignment types in higher dimensions compared to the
four-dimensional case [5].


• Boost-weight +1 components Ψijk can be decomposed as (see [4])


Ψijk = − 1
n−3


(δijΨk − δikΨj) + Tijk, T(ijk) = 0, Tiji = 0, Ti(jk) = 0. (2.23)


Thus there are two subcases of type I


– Subcase Ia: Ψi = 0 ⇔ Ψiji = 0,


– Subcase Ib: Tijk = 0 ⇔ ΨijkΨijk =
2


n−3
ΨiΨi.


Similar subclassification can be introduced for type III, i.e. for boost-weight
−1 components, Ψ′


ijk.


• Zero boost-weight components Φijkl can be decomposed in the same way as the
Riemann tensor:


Φijkl = C̄ijkl +
2


d− 2


(
δi[kR̄l]j − δj[kR̄l]i


)
−


2


(d− 1)(d− 2)
R̄δi[kδl]j (2.24)


with d = n− 2 and


R̄ij = S̄ij +
R̄


d
δij = Φikjk = −2ΦS


ij , R̄ = −2Φ. (2.25)


Therefore the following subclasses appear


– Subcase IIa: R̄ = 0,


– Subcase IIb: S̄ij = 0,


– Subcase IIc: C̄ijkl = 0,


– Subcase IId: Φ
A
ij = 0.


Some of their possible combinations are given in the table 3.
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Type Bel-Debever crit. superenergy ten. +2 +1 0 -1
G ℓ[eCa]bc[dℓf ]ℓ


bℓc 6= 0 Tabcdℓ
aℓbℓcℓd 6= 0


I ℓ[eCa]bc[dℓf ]ℓ
bℓc = 0 Tabcdℓ


aℓbℓcℓd = 0 Ωij


Ia ℓ[eCa]bcdℓ
bℓc = 0 Ωij Ψi


Ib Ωij Tijk


II ℓ[eCa]b[cdℓf ]ℓ
b = 0 Tabcdℓ


aℓbℓc = 0 Ωij Ψijk (Ψi)
IIa Cabcdℓ


bℓc = 0 Ωij Ψijk (Ψi) Φ
IIb Ωij Ψijk (Ψi) S̄ij


IIc Ωij Ψijk (Ψi) C̄ijkl


IId Cab[cdℓe]ℓ
b = 0 Ωij Ψijk (Ψi) ΦA


ij


IIabc ℓ[eCab][cdℓf ] = 0 Ωij Ψijk (Ψi) Φijkl


(Φ, ΦS
ij)


IIabd Cabc[dℓe]ℓ
c = 0 Tabcdℓ


aℓb = 0 Ωij Ψijk (Ψi) Φij


(Φ, ΦA
ij)


II’abd Cabcdℓ
d = 0 Ωij Ψijk (Ψi) Φij Ψ′


i


(Φ, ΦA
ij)


III ℓ[eCab][cdℓf ] = 0 Tabcdℓ
aℓc = 0 Ωij Ψijk (Ψi) Φijkl, Φ


A
ij


Cabc[dℓe]ℓ
c = 0 (Φ, ΦS


ij)
IIIa ℓ[eCab][cdℓf ] = 0 Ωij Ψijk (Ψi) Φijkl, Φ


A
ij Ψ′


i


Cabcdℓ
d = 0 (Φ, ΦS


ij)
IIIb Ωij Ψijk (Ψi) Φijkl, Φ


A
ij T ′


ijk


(Φ, ΦS
ij)


N Cab[cdℓe] = 0 Tabcdℓ
a = 0 Ωij Ψijk (Ψi) Φijkl, Φ


A
ij Ψ′


ijk


(Φ, ΦS
ij) (Ψ′


i)


Table 3: Summary of criteria for various algebraic classes of the Weyl tensor. Note
that for some subtypes Bel-Debever criteria or conditions involving the superenergy
tensor are not known. Last four columns show vanishing components of the Weyl
tensor of the corresponding boost weight. Components that are automatically zero
due to the identities given in table 1 are in brackets. Note that Cabc[dℓe]ℓ


c = 0
which is equivalent with Tabcdℓ


aℓb = 0 follows from Tabcdℓ
aℓc = 0 which is equivalent


with {ℓ[eCab][cdℓf ] = 0 ∧ Cab[cdℓe]ℓ
b = 0} [28, 29]. The same conditions can be


applied in the case of secondary classification (e.g. condition for type II applied to
a vector n in type D spacetimes). In four dimensions the following equivalences hold:
Ia =II=IIb =IIc, IIabc =IIa, IIabd =III and II’abd =IIIa =N [19].


• Boost-weight -2 components are represented by a symmetric traceless matrix
Ω′


ij and so type N spacetimes can be further classified according to multiplicities
of eigenvalues of Ω′


ij . In four dimensions, there is only one case with two distinct
non-vanishing eigenvalues, i.e. in Segre notation {11}. In five dimensions, there
are three possible cases:
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– Three distinct non-vanishing eigenvalues, i.e. in Segre notation {111},


– Two distinct non-vanishing eigenvalues, one of them with multiplicity 2,
i.e. in Segre notation {(11)1},


– Two distinct non-vanishing eigenvalues and one vanishing, i.e. in Segre
notation {110}.


One can similarly classify type N in each dimension. As was shown in [26],
for type N Ricci flat spacetimes the only possible case in arbitrary dimension
is {110 . . . 0}. This result can be straightforwardly generalized to the case of
Einstein spacetimes, see also Ref. [24] in this volume.


3. Equivalent approaches to the algebraic classifications of the Weyl tensor


– superenergy tensor and Bel-Deber criteria


There are equivalent approaches to the algebraic classification of the Weyl tensor
leading to the same classification scheme as in table 2, namely finding principal null
directions of the superenergy tensor [28, 29] and classifying the Weyl tensor according
to Bel-Deber criteria [19].


3.1. Classification based on principal null directions of the superenergy


tensor


In four dimensions Petrov types can be defined using principal null directions of
the completely symmetric and traceless Bel-Robinson tensor1 [28, 29]


Tabcd = CaecfCb
e
d
f −


1


8
gabgcdCefghC


efgh (3.1)


as follows2


1. Petrov type I ⇔ there exists ℓ such that Tabcdℓ
aℓbℓcℓd = 0,


2. Petrov type II (or D) ⇔ there exists ℓ such that Tabcdℓ
bℓcℓd = 0,


3. Petrov type III ⇔ there exists ℓ such that Tabcdℓ
cℓd = 0,


4. Petrov type N ⇔ there exists ℓ such that Tabcdℓ
d = 0.


In higher dimensions, superenergy tensor [28, 29], a generalization of the Bel-
Robinsor tensor, can be defined as


Tabcd = CaecfCb
e
d
f+CaedfCb


e
c
f− 1


2
gabCefcgC


ef
d


g
− 1


2
gcdCaefgCb


efg+
1


8
gabgcdCefghC


efgh,


(3.2)


1Note that in four dimensions PNDs of the Bel-Robinson tensor coincide with PNDs of the Weyl


tensor.
2Recall that in the sequence of algebraic types I, II, III, N, each type is considered as a special


subcase of more general types.
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having symmetries
Tabcd = T(ab)(cd) = T(cd)(ab). (3.3)


The superenergy tensor is completely symmetric only in four and five dimensions [27]
and in four dimensions it reduces to the Bel-Robinson tensor (3.1) [9, 27].


Algebraic classification using principal null directions of the superenergy tensor
is summarized in the table 3.


3.2. Higher dimensional generalization of the Bel-Debever conditions


Generalization of the Bel-Debever approach towards classifying the Weyl tensor
was developed in [19]. It is summarized in table 3.


4. Examples


Now let us briefly classify some known exact solutions of the Einstein equations
in higher dimensions.


• Black ring solution representing spinning five-dimensional black hole with hori-
zon topology S2×S1 [10] consists of regions of type I and G and it is of type II
on the black hole horizon [25].


• Kerr metric describing gravitational field of a rotating black hole and its higher
dimensional generalization - Myers-Perry rotating black hole metric [16] are of
the algebraic type D in arbitrary dimension.


• Kerr-Schild spacetimes [13] are spacetimes with metric of the form


gab = ηab − 2Hkakb, (4.1)


where H is a scalar function and k a null vector with respect to the background
flat metric ηab and also to the full metric gab. Thanks to the simple form of the
metric these spacetimes can be analyzed in arbitrary dimension [18]. This class
contains important solutions such as Kerr and Myers-Perry black holes [16] and
type N pp-waves [3, 18]. Einstein Kerr-Schild spacetimes are of type II or more
special in arbitrary dimension and they split in two groups [18, 14]:


– Non-expanding solutions are always of type N and belong to the Kundt
class [3, 23]. This case contains radiative solutions.


– Expanding solutions are always of type II or D. This case contains black
holes.
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PREFACE


I guess that it was in 1976 when the Director of the Mathematical Institute of
the Czechoslovak Academy of Sciences appointed me a member of an Admission
Committee as a young mathematician asked him for a job. I carefully prepared my
question for the admission procedure. It was rather from programming languages
than from mathematics and I remember it till now: What is the difference between
the parameters of a subroutine called by name and by value? The applicant’s reply
was correct, he had no problems with answering other questions of the Committee
members either, and the Committee recommended the Director to sign a contract
with him. This applicant was Michal Kř́ıžek, whose sixtieth birthday we celebrate
at this Conference, Applications of Mathematics 2012.


Michal Kř́ıžek was born in Prague (Praha), Czechoslovakia, on March 8, 1952.
He studied numerical analysis at the Faculty of Mathematics and Physics of Charles
University in Prague, and received his MS degree in 1975 and RNDr. degree in
1977. He finished his PhD studies at the Mathematical Institute of the Czechoslovak
Academy of Sciences (now Institute of Mathematics of the Academy of Sciences of
the Czech Republic) in 1980, obtained the PhD degree (called CSc. degree at that
time) and started his research work at the Mathematical Institute, where he is now
at the post of senior research scientist.


He received his DrSc. degree from the Czechoslovak Academy of Sciences in 1992.
At Charles University, he was appointed Associate Professor (docent) in 2000 and
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Professor in 2003. Like in some other Central European countries, Professor is not
only a university post but also an academic title. In the Czech Republic, the title of
Professor is granted by the President of the Republic.


During his PhD studies at the Mathematical Institute, Michal Kř́ıžek got thor-
oughly acquainted with the finite element method and he remains faithful to the
method though his research interests are extraordinarily broad. They include many
sometimes very different fields and branches of mathematics, physics, astronomy, and
biology. He is not only interested in these fields but he also successfully published
results in them.


Let us name at least some of these branches. Historically the first subjects of
his interest in mathematics were the theory of optimal control, optimization, and
nonlinear programming. The finite element solution of Maxwell’s equations, the
biharmonic equation, nonlinear partial differential equations, and problems of math-
ematical physics in general, follow. Further areas of the finite element method in-
vestigated by Professor Kř́ıžek include construction of basis functions, variational
crimes, superconvergence, shape optimization, grid generation and local refinement,
and methods for solving large systems of linear algebraic equations.


A detailed view of Michal Kř́ıžek’s professional interests can be found on his
personal website www.math.cas.cz/∼krizek where he presents his list of publica-
tions as well as his favourite open problems. Moreover, the authorized list of his
publications follows in this volume of Proceedings. Good knowledge of geometry
and perfect space imagination have been Professor Kř́ıžek’s prerequisite for solving
some problems in 3D finite element grid generation and local refinement. His results
in this field are mostly connected with tetrahedra. His beloved open problems also
include face-to-face partitioning of polyhedra into acute tetrahedra. He has proven
that there is no face-to-face partition of the five-dimensional Euclidean space into
acute simplices.


In the last years, new subjects have entered the range of Michal Kř́ıžek’s research.
He works intensively in number theory and its connections to geometry. He publishes
significant results about simplices, Fermat numbers, Mersenne and Sophie Germain
primes, etc. The unusual width of his scientific interests can be demonstrated with
his recent papers discussing the connection of gravitational aberration and dark
energy. He is an expert on the mathematical background of the Prague astronomical
clock mechanism and, recently, he has been attracted by the mathematical aspects
of DNA coding and frameshifted stop codons.


His deep knowledge of computational mathematics was an important factor in the
cooperation of the Institute of Mathematics with several Czech industrial enterprises
in solving various engineering problems.


Michal Kř́ıžek is considerably engaged in popularization of science among stu-
dents as well as adults. He writes and translates papers to various Czech journals
and reads popular lectures. The history of mathematics, physics, and astronomy is
also his hobby.


Professor Kř́ıžek has been reading lectures for students at several Czech univer-
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sities, in particular at Charles University and Czech Technical University in Prague.
He has been a mentor to several PhD students. Some of them have already reached
remarkable success in computational mathematics. In addition to his work of re-
searcher and teacher, Michal Kř́ıžek also carries out a lot of activities in the orga-
nization of science. He is the Head of the Department of Constructive Methods of
Mathematical Analysis at the Institute of Mathematics. He also used to work as the
Chair of the Scientific Council of the Institute of Mathematics (1996–2003). He is
the Chair of the Commission of the Academy of Sciences for granting the scientific
degree Doctor of Science in mathematical analysis and related fields.


In addition to his more than 150 scientific papers, he has published also several
monographs about the finite element method and number theory in English and
several monographs in Czech, too. Many of his publications have a co-author or
co-authors, which confirms that he has a wide range of interests and a lot of friends
to collaborate with. He was a co-editor of many proceedings from international
conferences. His records show more than 1 500 citations (without self-citations and
self-citations of co-authors), his Hirsch index is 20, and his Erdős number is 2. The
paper M. Kř́ıžek, P. Neittaanmäki: On superconvergence techniques, which appeared
in Acta Appl. Math. in 1987, has been cited more than 180 times.


Michal Kř́ıžek became Associate Editor-in-Chief of Applications of Mathematics
in 2004 and Editor-in-Chief five years later. The journal was founded as Aplika-
ce matematiky by Ivo Babuška in 1956 and is published, with the current impact
factor 0.390, by the Institute of Mathematics. In addition, Professor Kř́ıžek is
also Editor-in-Chief of the Czech journal Advances of Mathematics, Physics and
Astronomy published by the Union of Czech Mathematicians and Physicists. More-
over, he is a member of editorial boards of other international journals.


Professor Kř́ıžek is a highly and internationally recognized scientist. He maintains
close contacts with many researchers all over the world and has been invited to read
lectures at many universities and conferences. The number of grants he has obtained,
jointly with his colleagues, from Czech as well as U.S. grant institutions, confirm that
his work is valued very highly.


He has been awarded several medals and honors, e.g. the Prize of the Academy of
Sciences of the Czech Republic in 1994, the Prize for Research Achievements of the
Minister of Education, Youth, and Sports of the Czech Republic (1996), the Prize of
the Academy of Sciences of the Czech Republic for Popularization of Science (1998),
the Achievement Award of the Union of Czech Mathematicians and Physicists (1999),
the Prize of the President of the Military Academy in Brno for Scientific Achieve-
ments (2003), and the Josef Hlávka Prize in Scientific Literature (2010). Michal
Kř́ıžek was elected to the Learned Society of the Czech Republic (2000) and to the
Hall of Fame for Engineering, Science and Technology (International Technology
Institute, San Diego, California, 2001). He was also elected a member of the Czech
Minds Society (2003) and a Merited Member of the Union of Czech Mathematicians
and Physicists (2006).


Michal Kř́ıžek’s colleagues, in this country as well as abroad, know him as a very
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modest and diligent scientist. It is hard to guess where he finds the time to carry
out all his numerous activities we have mentioned above. It is our privilege and
honor to congratulate him sincerely on his 60th birthday. We wish him personal
happiness, strong health, an optimistic mind, and, last but not least, further scientific
achievements.


* * *


This book contains both scientific papers (that have been peer-reviewed) and
stories about personal experiences with Michal Kř́ıžek, all collected to honor Pro-
fessor Kř́ıžek on the occasion of his 60th anniversary and dedicated to him. Some
of the papers have been orally presented at the Applications of Mathematics 2012
Conference organized by the Institute of Mathematics of the Academy of Sciences of
the Czech Republic and held in Prague on May 2–5, 2012. The Organizing Commit-
tee consisted of J. Brandts, J. Chleboun, S. Korotov, Q. Lin, P. Přikryl, K. Segeth, J.
Š́ıstek, A. Šolcová, and T. Vejchodský. Special thanks belong to Hanka B́ılková for
the typeseting and to Aihui Zhou for providing the picture used on the cover. The
Committee is grateful to all authors for their contributions and to the Grant Agency
of the Academy of Sciences of the Czech Republic for financial support through
Grant IAA 100190803. The Conference was also supported by RVO: 67985840.


Karel Segeth, on behalf of the Organizing Committee
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Abstract


The strong version of the Poincaré recurrence theorem states that for any prob-
ability space (Ω,S, P ), any P -measure preserving transformation T : Ω → Ω and
any A ∈ S almost every point of A returns to A infinitely many times. In [8] (see
also [4]) the theorem has been proved for MV-algebras of some type. The present
paper contains a remarkable strengthening of the result stated in [8].


1. Introduction


The Poincaré recurrence theorem [5] has been proved for Boolean algebras [7],
topological spaces [2] and for MV-algebras of some types in [8]. Recall that
MV-algebras play an analogous role in multivalued logics as Boolean algebras in two
valued logics. Any MV-algebra can be simply characterized by the help of an l-group
as an interval in it.


An l-group is an algebraic structure (G,+,≤), where (G,+) is a commutative
group, (G,≤) is a lattice, and the implication a ≤ b =⇒ a + c ≤ b + c holds.
MV-algebra is an algebraic structure


(M, 0, u,¬,⊕,⊙),


where 0 is the neutral element in G, u is a positive element, M = {x ∈ G; 0 ≤ x ≤ u},
¬ : M → M is a unary operation given by the equality


¬x = u− x,


and ⊕,⊙ are two binary operations given by


a⊕ b = (a+ b) ∧ u,


a⊙ b = (a+ b− u) ∨ 0.
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Example 1. Let S be an algebra of subsets of a set Ω. Then S is an MV-algebra. If
we identify sets A with their characteristic functions, then the corresponding l-group
(G,+,≤) consists of all measurable functions, + is the sum of functions, ≤ corre-
sponds to the set inclusion. Then 0 = 0Ω, u = 1Ω,


¬χA = χAc = 1Ω − χA,


χA ⊕ χB = χA∪B,


χA ⊙ χB = χA∩B.


Example 2. Let [0, 1] be the unit interval in the set R of real numbers. Then
(R,+,≤) is an l-group, so that [0, 1] is an MV-algebra


¬a = 1− a,


a⊕ b = min(a + b, 1),


a⊙ b = max(a + b− 1, 0).


In the following definitions we shall use the symbols an ր a and bn ց b. It
means that an ≤ an+1, bn ≥ bn+1, n = 1, 2, . . . and a =


∨


∞


n=1 an, b =
∧


∞


n=1 bn.


Definition 1. A σ-complete MV-algebra is called weakly σ-distributive, if for any
double sequence (aij)ij of elements of M such that


aij ց 0(j → ∞)


there holds
∧


φ:N→N


∞
∨


j=1


aiφ(i) = 0.


(The name distributive is motivated by the equality


∧


φ:N→N


∞
∨


j=1


aiφ(i) =
∞
∨


i=1


∞
∧


j=1


aij = 0.)


Definition 2. An MV-algebra with product is an MV-algebra with a commuta-
tive and associative binary operation ⋆ satisfying the following conditions (see [6],
equivalently [3]):


(i) a ⋆ u = a,


(ii) a ⋆ (b⊕ c) = (a ⋆ b)⊕ (a ⋆ c)


(iii) an ր a =⇒ an ⋆ b ր a ⋆ b.
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Definition 3. A state on an MV-algebra M is a mapping m : M → [0, 1] satisfying
the following conditions:


(i) m(u) = 1, m(0) = 0,


(ii) a⊙ b = 0 =⇒ m(a⊕ b) = m(a) +m(b),


(iii) an ր a =⇒ m(an) ր m(a).


Definition 4. Let M be a σ-complete MV-algebra with product, m : M → [0, 1]
be a state. By an m-preserving transformation of M we understand a mapping
τ : M → M satisfying the following conditions:


(i) τ(u) = u, τ(0) = 0;


(ii) τ(a⊙ b) = τ(a)⊙ τ(b);


(iii) τ(a⊕ b) = τ(a)⊕ τ(b);


(iv) τ(a ⋆ b) = τ(a) ⋆ τ(b);


(v) τ(a ∨ b) = τ(a) ∨ τ(b);


(vi) τ(a ∧ b) = τ(a) ∧ τ(b);


(vii) an ր a =⇒ τ(an) ր τ(a);


(viii) m(τ(a)) = m(a).


The following theorem has been proved in [8]. In the following text we use the
notation text Π∞


i=kci =
∧


∞


j=1 (ck ⋆ ck+1 ⋆ ... ⋆ ck+j).


Theorem 1. Let (M, ⋆) be a σ-complete weakly σ-distributive MV-algebra with
product, m : M → [0, 1] be a state, τ : M → M be a measure preserving transfor-
mation. Then


m


(


∞
∨


k=1


a ⋆ Π∞


i=kτ
i(¬a)


)


= lim
k→∞


m
(


a ⋆ Π∞


i=kτ
i(¬a)


)


= 0.


2. Strong Poincaré recurrence theorem


The following theorem is a strengthening of Theorem 1. The proof of the theorem
is new, too.


Theorem 2. Let (M, ⋆) be a σ-complete MV-algebra with product. Let m : M →
[0, 1] satisfy the following conditions:


1. m(0) = 0,


2. a ≤ b =⇒ m(a) ≤ m(b),


3. a⊙ b = 0 =⇒ m(a⊕ b) = m(a) +m(b).
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Let τ : M → M satisfy the conditions


4. τ(0) = 0,


5. a ≤ b =⇒ τ(a) ≤ τ(b),


6. τ(a⊙ b) = τ(a)⊙ τ(b),


7. m(τ(a)) = m(a) for all a ∈ M .


Then there holds for any a ∈ M and any k ∈ N


m (a ⋆ Π∞


i=kτ(¬a)) = 0.


(Here Π∞


i=kci =
∧


∞


j=0Π
k+j
i=k ci,Π


k+j
i=k ci = ck ⋆ ck+1 ⋆ ... ⋆ ck+j.)


Proof. Let a ∈ M . Put


b = a ⋆ τ(¬a) ⋆ τ 2(¬a) ⋆ · · · ⋆ τn(¬a) ⋆ · · · = a ⋆


∞
∧


n=1


Πn
i=1τ


i(¬a).


We have


b ≤ a,


b ≤ τn(¬a).


Then
τn(b) ≤ τn(a), b ≤ τn(¬a),


hence
b⊙ τn(b) ≤ τn(a)⊙ τn(¬a) = τn(a⊙ ¬a) = τn(0) = 0.


Also if l, j ∈ N, l < j, then


τ l(b)⊙ τ j(b) = τ l(b⊙ τ (j−l)(b)) = τ l(0) = 0.


We see that (τ j(b))∞i=0 is a disjoint system, hence


Σn
j=1m(τ j(b)) = m(⊕n


j=1τ
j(b)) ≤ 1.


Of course, m(τ(b)) = m(b) for j = 1, 2, . . . , n, hence


Σn
j=1m(τ j(b)) = Σn


j=1m(b) = nm(b).


From the relation


m(b) ≤
1


n


for any n ∈ N we obtain


0 = m(b) = m (a ⋆ Π∞


i=1τ(¬a)) . (⋆)
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If we use s = τk : M → M instead of τ we obtain by (⋆)


m(a ⋆ Π∞


i=kτ
i(¬a)) ≤ m(a ⋆ Π∞


i=1(τ
k)i(¬a))) = m(a ⋆ Π∞


i=1s
i(¬a)) = 0,


hence
lim
k→∞


m(a ⋆ (Π∞


j=k(τ
j(¬a)))) = 0.


Corollary. Let m satisfy in addition the continuity condition


an ր a =⇒ m(an) ր m(a).


Then


m(
∞
∨


k=1


a ⋆ (Π∞


j=kτj(¬a))) = 0


3. Conservative mappings


P. R. Halmos [1] has shown that it is not necessary to assume that τ is measure
preserving for the proof of the Poincaré theorem. It suffices to assume that there
is no set A of positive measure such that the family (τ i(A))∞i=1 is disjoint. We shall
show that this works also in MV-algebras. Of course, instead of the family of sets of
zero measure we shall consider an ideal N ⊂ M.


Definition 5. Let M be an MV-algebra with product. A subset N ⊂ M is called
a weak ideal if is satisfies the following conditions:


1. 0 ∈ N .


2. If a ≤ b, a ∈ M, b ∈ N , then a ∈ N .


A mapping τ : M → M is called conservative if the following conditions hold:


3. If (τ i(b))∞i=0 forms a disjoint system (i.e. τ i(b) ⊙ τ j(b) = 0 for i 6= j) then
b ∈ N .


4. τ(a⊙ b) = τ(a)⊙ τ(b) for any a, b ∈ M.


5. a ≤ b implies τ(a) ≤ τ(b).


6. b ∈ N ⇐⇒ τ(b) ∈ N .


Theorem 3. Let M be a σ-complete MV-algebra with product, N ⊂ M be its
weak ideal, τ : M → M be a conservative mapping. Then


a ⋆ Π∞


i=kτ
i(¬a) ∈ N


for any a ∈ M and any k ∈ N .


Proof. Put
b = a ⋆ Π∞


i=1τ
i(¬a).
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Then


b ≤ a


b ≤ τn(¬a),


hence


b⊙ τn(b) ≤ τn(a⊙ ¬a) = τn(0) = 0.


It is easy to see that (τ i(b))∞i=0 is a disjoint system, i.e.


τ i(b)⊙ τ j(b) = 0


for i 6= j, hence
a ⋆ (Π∞


i=1τ
i(¬a)) = b ∈ N . (⋆⋆)


If τ is conservative, then also s = τk is conservative. Namely, if


si(b)⊙ sj(b) ∈ N


for i 6= j and b ∈ M, then


τ i(c)⊙ τ j(c) ∈ N


for i 6= j and c = τk(b). Therefore


τk(b) = c ∈ N


hence


b ∈ N .


The equality (⋆⋆) implies


a ⋆ Π∞


i=1s
i(¬a) ∈ N


and since


a ⋆ Π∞


j=kτ
j(¬a) ≤ a ⋆ Π∞


i=iτ
ki(¬a) = a ⋆ Π∞


i=1s
i(¬a) ∈ N


we have


a ⋆ Π∞


j=kτ
j(¬a) ∈ N .
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[2] Maličký, P.: Category version of the Poincaré recurrence theorem. Topology
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[7] Riečan, B.: A note on the Poincaré recurrence theorem on Boolean rings. Mat.
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Abstract


In the contribution, we are concerned with the exact interpolation of the data at


nodes given and also with the smoothness of the interpolating curve and its derivatives.


This task is called the problem of smooth approximation of data. The interpolating


curve or surface is defined as the solution of a variational problem with constraints.


We discuss the proper choice of basis systems for this way of approximation and


present the results of several 1D numerical examples that show the quality of smooth


approximation.


1. Introduction


Measurements of the values of a continuous function of one, two, or three inde-
pendent variables are carried out in many branches of science and technology. We
always get a finite number of function values evaluated at a finite number of points
but we are interested also in intermediate values corresponding to other points. This
is the well-known problem of interpolation.


In this contribution, we are concerned only with the exact interpolation of data
given at nodes but more complex problems are mentioned in Section 5, too. The his-
tory of interpolation has its roots in the pre-computer era. Moreover, approximation
of data does not have a unique solution as our requirements on the smoothness of
the approximating curve or surface may be very subjective. A possible criterion is to
minimize the integral of the squared magnitude of the interpolating function. Since
the minimization is carried out over a restricted set of smooth functions we cannot
expect that the minimum equals zero. A more sophisticated criterion is to minimize,
with some weights chosen, the integrals of the squared magnitude of some (or pos-
sibly all) derivatives of the interpolating function. The cubic spline interpolation is
known to be the approximation of this kind.


We confine ourselves to the case of one independent variable. We briefly sum-
marize the approach of Talmi and Gilat [3] in Section 2. Several basis systems of
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functions for 1D smooth approximation are shown in Section 3. In the next section,
we present results of numerical experiments comparing the classical interpolation
formulae and various versions of the smooth approximation. In Section 5 we finally
sum up the results presented and give possible directions for further research.


2. Smooth approximation


Let us consider the linear vector space W̃ of complex functions g continuous
together with their derivatives of all orders on the possible infinite interval (a, b).


For g, h ∈ W̃ we construct the expression


(g, h) =


∞∑


l=0


Bl


∫ b


a


[g(l)(x)]∗h(l)(x) dx, (1)


where ∗ denotes the complex conjugate, B0 > 0, and {Bl}
∞


l=0 is a sequence of non-
negative numbers. Let us further put


‖g‖ =
√


(g, g), (2)


i.e.


‖g‖2 =


∞∑


l=0


Bl


∫ b


a


|g(l)(x)|2 dx. (3)


If the value of ‖g‖ exists and is finite we call it the norm of the function g. If the same
is true for the function h then it can be proven that the expression (1) exists and is
finite, too, and, moreover, it has the properties of the inner product of functions g
and h. We can prove that the set of all such functions forms a Hilbert space W
corresponding to the sequence {Bl}. The choice of this sequence defines weights of
the individual derivatives in the expression (3).


It can be shown that in the case B0 = 0 the expression (2) is only a seminorm.
We consider this case later.


Let f be a (complex, in general) function continuous on the interval (a, b). Let
the values fj = f(Xj) of this function f at the finite number of mutually distinct
nodes X1, X2, . . . , XN ∈ (a, b) be given, e.g. measured, where N is a fixed integer.


Following [3] we formulate the problem of smooth approximation of the above func-
tion f that is represented by its values at N nodes. Let us choose a sequence {Bl}.
Further let us choose a system of functions gk ∈ W , k = 1, 2, . . . , that is complete
and orthogonal (with respect to the inner product (1)), i.e.,


(gk, gn) = 0 for k 6= n, (gk, gk) = ‖gk‖
2 6= 0. (4)


Then the problem of smooth approximation is to find the coefficients Ak of the series


z(x) =
∞∑


k=1


Akgk(x) (5)
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such that
z(Xj) = fj , j = 1, . . . , N, (6)


and
the quantity ‖z‖ attains its minimum. (7)


Apparently,


‖z‖2 =
∞∑


k=1


A∗


kAk‖gk‖
2 (8)


due to (4) and (5). The smooth approximation problem thus consists of the vari-
ational problem (7), i.e. minimizing the functional (8), with constraints (6). It is
solved by the method of Lagrange multipliers in the proof of the following theorem.


Note that when minimizing (8), we not only minimize the integral of |z|2 but also
(with a weight Bl chosen) the integral of |z(l)|2, i.e. of the lth derivative. This can
be of importance in processing such measurements where also a good approximation
of the first derivative is needed.


Put


R(x, y) =
∞∑


k=1


gk(x)g
∗


k(y)


‖gk‖2
. (9)


The principal result of [3] is the following theorem.


Theorem 1. Let Xi 6= Xj for all i 6= j. Assume that the series (9) converges for


all x, y ∈ (a, b). Then the problem (6), (7) of smooth approximation has the unique


solution


z(x) =
N∑


j=1


λjR(x,Xj), (10)


where the coefficients λj, j = 1, . . . , N , are the unique solution of the linear algebraic


system
N∑


j=1


λjR(Xi, Xj) = fi, i = 1, . . . , N. (11)


Proof. The proof can be put together from its pieces in Section 2 and Appendix C
of [3]. Nevertheless, we present the proof briefly here. We use the Lagrange method,
i.e. introduce the multipliers λj, j = 1, . . . , N , and subtract the constraint (6) with
these multipliers from the functional ‖z‖ to obtain the functional


∞∑


k=1


A∗


kAk‖gk‖
2 −


N∑


j=1


λ∗


j


(
∞∑


k=1


Akgk(Xj)− fj


)
,


where we have used (5) and (8). Differentiating with respect to An and λi to obtain
the conditions necessary for extrema, we get


A∗


n‖gn‖
2 −


N∑


i=1


λ∗


i gn(Xi) = 0, n = 1, 2, . . . ,
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from where we can compute


Ak =
1


‖gk‖2


N∑


j=1


λjg
∗


k(Xj), k = 1, 2, . . . .


Substituting this into (5) and taking (9) into account, we obtain (10). The condi-
tion (6) becomes now (11), which is a system of N linear algebraic equations for the
unknowns λj, j = 1, . . . , N . We finally show that the system (11) is nonsingular.
Choosing µj arbitrary and putting


u(x) =


N∑


j=1


µjR(x,Xj),


we calculate that


‖u‖2 = (u, u) =
N∑


i=1


N∑


j=1


µiµ
∗


j(R(x,Xi), R(x,Xj)) =
N∑


i=1


N∑


j=1


µiµ
∗


jR(Xj, Xi) ≥ 0 (12)


for arbitrary µj, j = 1, . . . , N . On our assumptions that the system gk is complete
and B0 6= 0 we have ‖u‖ = 0 if and only if all µj are zero. Therefore, if not all µj


are zero then ‖u‖ > 0 and the positive definiteness (and nonsingularity as well) of
the matrix [R(Xj , Xi)] follows directly from (12). The system (11) thus has a unique
solution. �


For particular cases, some error estimates are given in Appendix B of [3].
To get a more general smooth approximation, we can choose a positive integer L


and put Bl = 0 for l = 0, 1, . . . , L − 1 (cf. [1]). As a consequence, the expression
in (1) does not contain the first L terms and we denote it by (·, ·)L, the quantity ‖ · ‖
defined in (2) is a seminorm and we denote it by | · |L. Instead of (5) we can assume


z(x) = t(x) +


∞∑


k=1


Akgk(x), |gk|L 6= 0, t(x) =


L−1∑


p=0


apϕp(x), (13)


where {ϕp}, p = 0, 1, . . . , L− 1, is a set of mutually orthogonal functions such that


(ϕp, ϕq)L = 0, p, q = 0, 1, . . . , L− 1.


Then we put


|z|2L =
∞∑


k=1


A∗


kAk|gk|
2
L, RL(x, y) =


∞∑


k=1


gk(x)g
∗


k(y)


|gk|2L
.


A statement analogous to that of Theorem 1. then holds. It is possible to prove
that the solution of the problem of smooth approximation, consisting of the sys-
tem (6) and the condition


the quantity |z|L attains its minimum,
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has the unique solution


z(x) =


L−1∑


p=0


apϕp(x) +


N∑


j=1


λjRL(x,Xj),


where the coefficients ap and λj are the solution of the system ofN+L linear algebraic
equations


N∑


j=1


λjϕp(Xj) = 0, p = 0, 1, . . . , L− 1,


L−1∑


p=0


apϕp(Xi) +
N∑


j=1


λjRL(Xi, Xj) = fi, i = 1, . . . , N.


As Bl = 0, l = 0, 1, . . . , L − 1, we minimize only the seminorm |z|L and the
integrals of |z(l)|2, l = 0, 1, . . . , L − 1, cannot be minimized. On the other hand, it
does not cause difficulties to put Bl = 0 for some l > M , where M ≥ 0 and BM 6= 0.
As we have mentioned, the effect of this choice is only that the integral of |z(l)|2 is
not minimized. In this way, we can put Bl = 0 for infinitely many indices l and make
the sum in (1) as well as (3) finite.


In [3], the authors present a typical example, interpolating piecewise cubic splines
from C2(a, b), that are known to minimize the integral of |z′′|2 over (a, b), see, e.g., [4].
The smooth approximation procedure gives splines of degree 2L−1 if we put Bl = 0
for l 6= L, BL 6= 0, i.e. L = 2 and B2 6= 0 in the cubic case. We use this cubic spline
approximation in Section 4 to compute some numerical results.


3. Examples of basis systems of functions for smooth approximation


In [3], the authors present explicitly three types of functions f to be approxi-
mated, propose some proper basis systems of functions gk, and compute the corre-
sponding functions R(x, y). The three types are


(a) f periodic, e.g. f(x) = f(x+ 2π).


(b) f nonperiodic, defined in (−∞,∞), f (l)(±∞) = 0 for all l ≥ 0.


(c) f nonperiodic, defined on a finite interval, e.g. (−1, 1).


According to [3], the recommendations of basis systems for the individual types
of f are as follows.


(a) The natural basis system for this case is


gk(x) = exp( ikx), k = . . . ,−2,−1, 0, 1, 2, . . . . (14)
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This range of k requires a slight change in the above formulae. It is easy to show that
the system (14) is complete and orthogonal with respect to the inner product (1),


‖gk‖
2 = 2π


∞∑


l=0


Blk
2l, and R(x, y) =


∞∑


k=−∞


exp( ik(x− y))


‖gk‖2
. (15)


In Table II of [3] the authors present the values of ‖gk‖ for some particular choices
of the sequence {Bl}.


(b) If the interval is (−∞,∞) and functions f are nonperiodic, the authors in [1, 3]
derive the proper basis system in such a way that they start with the system (14)
on a finite interval (a, b) and carry out the passage of a and b to the infinity. At the
same time, the sum in the definition (15) becomes the integral


R(x, y) =


∫
∞


k=−∞


exp( ik(x− y))


‖gk‖2
dk.


Integrals are often calculated analytically more easily than the corresponding sums.
In Table II of [3] the authors present formulae for some choices of {Bl}. For instance,
let 0 < D < 1 and Bl = D2l/(2l)!. Put


r = |x− y|. (16)


Then


R(x, y) =
1


2D cosh(πr/(2D))
. (17)


We use the above basis system in the next section to show some numerical results.


(c) If f is defined on the interval (−1, 1) and nonperiodic, a possible choice of basis
system starts with the monomials


hk(x) = xk, k = 0, 1, 2, . . . . (18)


This system is not orthogonal but we can get a complete and orthonormal sys-
tem {gk} from {hk} by the Gram-Schmidt orthonormalization procedure (see, e.g., [4])
with respect to the inner product (1). All computations, including the substitution in
the series (9) for R(x, y), are carried out numerically. We perform this computation
and use this basis system in the next section to show some numerical results.


4. Numerical experiments


In this section, we present results of some numerical examples. The solid line is
used to depict the exact function f (case 0) in the graphs that follow. We employ
three ways of smooth approximation:
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I (dashed line) The procedure described in (b). Basis system (14) transformed to
(−∞,∞) with Bl = D2l/(2l)!, 0 < D < 1, and R(x, y) given by (16), (17). We put
D = 1/3.


II (dotted line) The procedure described in (c). Basis system {gk} obtained from (18)
by orthonormalization with Bl = D2l/(2l)!, D = 1/3, and R(x, y) given by the gen-
eral formula (9).


III (dashed line) Cubic spline interpolation obtained as a particular case of (b).
Basis system (14) transformed to (−∞,∞) with all Bl = 0 except for B2 = 1.
Further, R2(x, y) = |x− y|3 and (13) has the form


t(x) = a0 + a1x.


Cubic splines are, at the same time, considered to belong to classical interpolation
methods.


Further, we employ also two ways of classical interpolation (see, e.g., [2]):


IV (dotted line) Polynomial interpolation.


V (dash-dot line) Rational function interpolation.


The software for the classical interpolation is from the book [2], too.


Problem. The function to be approximated is


f(x) =
1


1 + 16(x+ 0.5)2
+


1


1 + 16(x− 0.25)2
, x ∈ [−1, 1],


and belongs to type (c). The function has two “almost poles” at x = −0.5 and
x = 0.25. We constructed the smooth approximation and computed the classical
interpolation in equidistant and nonequidistant grids. The results for the equidistant
grid withN = 9 are presented in Fig. 1. The curves 0 and V are identical as f is a sum
of two rational functions, and the curves I, II, and III are almost identical. Figure 2
shows the error of the solutions. The error of the polynomial approximation IV is
omitted in Fig. 2 since, as expected, it is very large. Moreover, the errors of I, II,
and III are similar. The largest L∞ error in Fig. 2 is the error 0.027 of the smooth
approximation II.


Further, we carried out the same computation in some nonequidistant grids. The
results for N = 9 with the grid


{−1.00,−0.80,−0.70,−0.60, 0.00, 0.30, 0.45, 0.75, 1.00} (19)


are presented in Fig. 3. The curves 0 and V are identical. Figure 4 shows the error
of the solutions. The error of the polynomial approximation IV is omitted in Fig. 4.
The largest L∞ error in Fig. 4 is the error 0.141 of the smooth approximation II.
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Figure 1: Interpolating functions for the problem, equidistant grid with N = 9.
Curves at x = 0.9 from top to bottom: IV, all the rest of curves are almost identical.


−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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Figure 2: Error. The same equidistant grid as in Fig. 1. Different scaling on the
vertical axis. Curves at x = −0.1 from top to bottom: V, III, I, II.


250







−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2


0


0.2


0.4


0.6


0.8


1


1.2


Figure 3: Interpolating functions for the problem, nonequidistant grid with N = 9
and nodes (19). Curves at x = −0.2 from top to bottom: III, IV, 0 identical
to V, I, II.
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Figure 4: Error. The same nonequidistant grid as in Fig. 3. Different scaling on the
vertical axis. Curves at x = −0.2 from top to bottom: III, V, I, II.
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5. Conclusion


We have carried out some numerical experiments to compare the properties of
smooth approximation and classical interpolation. They show that the smooth inter-
polation is a competitive method. The results shown in Section 4 are necessarily very
inexact if N < 9. Except for the polynomial approximation IV, they are improving
as N increases. The resulting curves fit the maxima at the points x = −0.5 and
x = 0.25 quite well even if they are not the grid nodes.


The L∞ error, except for the error of the polynomial interpolation, decreases as
N increases. Nevertheless, we should keep in mind that the only exact conditions
on the approximation are the values at nodes. We saw that the behavior of the
interpolants between nodes (their smoothness) can be governed by some rules that
add some, maybe subjective, information to the problem.


Since the extent of this paper is limited we present only a single example. We
are aware that we can draw no principal conclusions from it.


We have been concerned only with the problem of smooth exact interpolation of


function values at nodes (6). Moreover, the smooth approximation approach can be
employed also in the exact Hermite interpolation (i.e. interpolation of function values
as well as values of some derivatives at nodes) and in the smoothing of data when
not the exact interpolation of data at nodes but a smooth interpolation curve (best
fit curve) is required. These subjects are also covered in [3].


The 2D case is much more interesting and makes many important applications
possible. The interpolation nodes can be arbitrarily placed in the plane. Partic-
ular physical use can lead to very specific requirements on the smoothness of the
approximating surface. This is the direction we are going to continue this research.
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Abstract


We describe a parallel implementation of the Balancing Domain Decomposition by
Constraints (BDDC) method enhanced by an adaptive construction of coarse problem.
The method is designed for numerically difficult problems, where standard choice of
continuity of arithmetic averages across faces and edges of subdomains fails to main-
tain the low condition number of the preconditioned system. Problems of elastic-
ity analysis of bodies consisting of different materials with rapidly changing stiffness
may represent one class of such challenging problems. The adaptive selection of con-
straints is shown to significantly increase the robustness of the method for this class
of problems. However, since the cost of the set-up of the preconditioner with adaptive
constraints is considerably larger than for the standard choices, computational feasi-
bility of the presented implementation is obtained only for large contrasts of material
coefficients.


1. Introduction


The Balancing Domain Decomposition by Constraints (BDDC) was developed by
Dohrmann [3] as a primal alternative to the Finite Element Tearing and Intercon-
necting - Dual, Primal (FETI-DP) by Farhat et al. [4]. Both methods use constraints
to impose equality of new coarse variables on substructure interfaces, such as values
at substructure corners or averages over edges and faces.


FETI-DP and BDDC are quite robust. However, the condition number may
deteriorate in certain situations of practical importance. Typical difficulties include
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rough interfaces of subdomains introduced by automatic partitioning of the mesh, or
problems with strong discontinuities of coefficients. A recent comprehensive study
of problems from the last group is presented in [10, 11]. It is shown there, that
while some configurations of jumps do not present problems for robustness of the
method, other configurations may lead to very poor performance. Such a troublesome
configuration is typically faced when the domain of considerably different coefficient
cuts through the faces of subdomains. For such complicated problems, a better
selection of constraints is desirable. Enriching the coarse space so that the iterations
run in a subspace devoid of ‘difficult’ modes has been a successful trick in earlier
iterative substructuring methods as well as multigrid methods. For BDDC and
FETI-DP, the adaptive enrichment was first proposed in [8]. In [9], generalization
to three-dimensional problems formulated in terms of BDDC operators was given.


Here, we build on top of our results in [9]. We focus on study of the behaviour of
the adaptive method for problems with jumps in coefficients. We consider a model
problem of nonlinear elasticity analysis of a cube containing rods of much larger
stiffness. Moreover, some of these rods are punching through faces of subdomains.
It is shown, that performance of the standard BDDC method deteriorates quite
fast with increasing contrast, that corresponds to the ratio of the coefficients. On
the other hand, adaptive constraints reduce the condition number considerably and
thus significantly improve the robustness of the method with respect to jumps in
coefficients. We study the cost of this approach in connection with our current
implementation of BDDC method. As the cost of computing these averages keeps
rather large, it is shown that regarding computational time, this advanced selection
of constraints is beneficial only for quite large contrasts compared to the standard
BDDC method, provided the latter converge. It is also demonstrated, that the
enhanced method is able to produce a solution also for such difficult cases, for which
standard BDDC does not converge at all.


2. Iterative substructuring


As the main purpose of this contribution is to report on experience with using of
adaptive BDDC rather than to provide a self contained description of the method,
iterative substructuring and BDDC are only briefly recalled in this and the next
section, respectively. Reader is kindly referred to [9] for details. We follow the
notation introduced in that paper throughout this contribution.


Consider an elliptic boundary value problem defined on a bounded domain Ω⊂R3


and discretized by conforming finite elements. The domain Ω is decomposed into N
nonoverlapping subdomains Ωi, i = 1, . . . N , also called substructures. The nodes
contained in more than one substructure are called the interface, denoted by Γ,
and Γi = Γ ∩ Ωi is the interface of substructure Ωi. The interface Γ may also be
classified as the union of three different types of nonoverlapping sets: faces, edges,
and corners. A face contains all nodes shared solely by one pair of subdomains,
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an edge contains all nodes shared by same set of more than two subdomains, and
a corner is a degenerate edge with only one node.


We identify finite element functions with the vectors of their coefficients in the
standard finite element basis. These coefficients are also called variables or degrees
of freedom. We also identify linear operators with their matrices, in bases that will
be clear from the context.


The space of all finite element functions on subdomain Ωi is denoted by Wi, and
let


W = W1 × · · · ×WN . (1)


The space W is equipped with the standard Rn basis and the Euclidean inner product
〈w, v〉 = wTv. For a symmetric positive semidefinite matrix M , 〈u, v〉M = 〈Mu, v〉,
and ‖u‖M = 〈Mu, u〉1/2.


Let Ai : Wi → Wi be the local substructure stiffness matrix, obtained by the sub-
assembly of element matrices only in substructure Ωi. The matrices Ai are symmetric
positive semidefinite for an elliptic problem. We can write vectors and matrices in
the block form


w =


 w1
...
wN


 , w ∈ W, A =


A1


. . .


AN


 : W → W. (2)


Now let U ⊂ W be the space of all functions from W that are continuous across
substructure interfaces. We are interested in solving the problem


u ∈ U : 〈Au, v〉 = 〈f, v〉, ∀ v ∈ U , (3)


where f ∈ W is a given right-hand side. This problem corresponds to the standard
solution of an elliptic partial differential equation discretized by the finite element
method.


Remark 1. Let matrix R be the global-to-local mapping that restricts the global
vectors of degrees of freedom to local degrees of freedom on each Ωi. Then RTAR is
the global stiffness matrix, and (3) is equivalent to the assembled system


RTARu = RTf, (4)


where u is the coefficient vector satisfying u = Ru.


Denote by UI ⊂ W the space of all (vectors of) finite element functions with
nonzero values only in the interiors of substructures Ωi. Then UI ⊂ U , and the
space W is decomposed as the A-orthogonal direct sum


W = UI ⊕WH , UI ⊥A WH , (5)
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where the functions from WH are called discrete harmonic. The A-orthogonal pro-
jection onto UI is denoted by


P : W → UI . (6)


The space of all discrete harmonic functions from W that are continuous at interface
is denoted by Ŵ . We have


Ŵ = WH ∩ U = (I − P )U, (7)


and the A-orthogonal decomposition


U = UI ⊕ Ŵ , UI ⊥A Ŵ . (8)


The solution u ∈ U of problem (3) is split as


u = uI + w, uI ∈ UI , w ∈ Ŵ . (9)


Solving for the interior component uI ∈ UI decomposes into N independent Dirichlet
problems. We are interested in finding the discrete harmonic component w ∈ Ŵ ,
which is the solution of the reduced problem


w ∈ Ŵ : 〈Aw, z〉 = 〈f, z〉 , ∀z ∈ Ŵ . (10)


Problem (10) is solved by a Krylov subspace method, e.g. preconditioned conjugate
gradient method (PCG) in the case of symmetric positive definite matrix, and the
BDDC serves as a preconditioner for this method.


Let us briefly summarize the main steps of iterative substructuring, details may
be found e.g. in [14].


Algorithm 1. (Iterative substructuring). Problem (3) is solved indirectly by the
following steps:


1. Prepare reduced problem (10), i.e. factorize the matrices of local Dirichlet
problems on each subdomain. This formally corresponds to construction of
Schur complement and reduced right-hand side with respect to the interface Γ
except that the former is not constructed explicitly. This step is inherently
parallel.


2. Solve problem (10) by a Krylov subspace method.


3. Reconstruct the whole solution of problem (3) on each subdomain by solving the
local Dirichlet problems. This step is inherently parallel.


256







3. Balancing domain decomposition by constraints


Let us further define an averaging operator


E : W → U, (11)


which is a projection from W onto U . Then the operator


(I − P )E : W → Ŵ (12)


is a projection from W onto Ŵ . Its evaluation consists of averaging between the
substructures, followed by the discrete harmonic extension from the substructure
boundaries. Note that


(I − (I − P )E)w = (I − P ) (I − E)w, ∀w ∈ WH , (13)


since Pw = 0 if w ∈ WH .
Proper weights (e.g. proportional to the substructure stiffness) in the averaging


given by E are important for the performance of BDDC (as well as other iterative
substructuring methods) independent of different stiffness of substructures [5, 7].
The scaled operator E takes care of the case of jumps of coefficients, when these are
constant on each subdomain. A detailed discussion of construction of the averaging
operator E can be found in [1].


The BDDC preconditioner is characterized by a selection of coarse degrees of
freedom, such as values at corners and averages over edges or faces. We are mainly
interested in construction of efficient weighted averages on faces of subdomains in the
rest of this paper. For selection of corners, we use the face-based algorithm described
in [12] and we use arithmetic averages on edges.


The action of the BDDC preconditioner is then defined in the space given by the
requirement that the coarse degrees of freedom on adjacent substructures coincide,
which is enforced in the algorithm by constraints. So, the design of the BDDC
preconditioner is characterized by a selection of an intermediate space W̃ satisfying
these constraints,


Ŵ ⊂ W̃ ⊂ WH . (14)


We formally define the space W̃ by enforcing the constraints on continuity weakly
by a matrix D, in which each row defines one constraint,


W̃ = {w ∈ WH : Dw = 0} . (15)


An application of BDDC preconditioner can be described as solving the original
variational problem in the space W̃ .


MBDDC : r 7→ u = (I − P )Ew, w ∈ W̃ : 〈Aw, z〉 = 〈r, (I − P )Ez〉 , ∀z ∈ W̃ ,
(16)


where r is the residual in the PCG method.
The following condition number bound for BDDC will play an essential role in


our design of the adaptive method.
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Theorem 1. ([7]). The eigenvalues of the preconditioned operator of the BDDC
method satisfy 1 ≤ λ ≤ ωBDDC, where


ωBDDC = sup
w∈W̃


‖(I − (I − P )E)w‖2A
‖w‖2A


. (17)


4. Adaptive selection of constraints


The condition number bound ωBDDC from Theorem 1. equals to the maximum
eigenvalue λ1 of the associated generalized eigenvalue problem


w ∈ W̃ : 〈(I − (I − P )E)w, (I − (I − P )E) z〉A = λ 〈w, z〉A , ∀z ∈ W̃ . (18)


Since the bilinear form on the left-hand side of (18) is symmetric positive semi-
definite and the bilinear form on the right-hand side is symmetric positive definite,
application of the Courant-Fisher-Weyl minimax principle (cf. e.g. [2, Theorem 5.2])
leads to the following theorem.


Theorem 2.. The generalized eigenvalue problem (18) has eigenvalues λ1 ≥ λ2 ≥
. . . ≥ λn ≥ 0. Denote the corresponding eigenvectors w`. Then, for any k =
1, . . . , n− 1, and any linear functionals L` on W , ` = 1, . . . , k,


max


{
‖(I − (I − P )E)w‖2A


‖w‖2A
: w ∈ W̃ , L` (w) = 0, ∀` = 1, . . . , k


}
≥ λk+1, (19)


with equality if


L` (w) = 〈(I − (I − P )E)w`, (I − (I − P )E)w〉A . (20)


It follows that the optimal decrease of the condition number bound (17) can be
achieved by adding the rows dT` defined by dT` w = L` (w) to the constraint matrix D


in the definition of W̃ (15). However, solving the global eigenvalue problem (18)
would be prohibitively expensive. For this reason, we replace (18) by a collection of
local problems, each defined by considering only two adjacent subdomains Ωi and Ωj


at a time. Subdomains are considered adjacent if they share an edge in 2D, or a face
in 3D. All quantities associated with such pair will be denoted by the subscript ij.
Using also (13), the local generalized eigenvalue problem (18) becomes


wij ∈ W̃ij :


〈(I − Pij) (I − Eij)wij, (I − Pij) (I − Eij) zij〉Aij
= λ 〈wij, zij〉Aij


,∀zij ∈ W̃ij.
(21)


The space W̃ij is constructed with respect to an initial set of constraints on continuity
between subdomains i and j. The starting point used in this paper is continuity at
corners and of arithmetic averages on edges. We assume that initial constraints
are already sufficient to prevent relative rigid body motions of any pair of adjacent
substructures. The maximal eigenvalue of (21) is denoted ωij = λij,1.
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Definition 1. (Condition number indicator). The heuristic condition number indi-
cator ω̃ is defined as


ω̃ = max {ωij : Ωi and Ωj are adjacent} . (22)


Considering two adjacent subdomains Ωi and Ωj only, we construct the added
constraints L` (w) = 0 from (20) as


〈(I − Pij) (I − Eij)wij,`, (I − Pij) (I − Eij)w〉Aij
= 0, ∀` = 1, . . . , kij, (23)


where wij,` are the eigenvectors corresponding to the kij largest eigenvalues from (21).
These constraints then form additional rows of matrix D.


Algorithm 2. (Adaptive BDDC). Find the smallest kij for each pair of adjacent
substructures Ωi and Ωj to guarantee that λij,kij+1 ≤ τ , where τ is a given tolerance,


and add the constraints (23) to the definition of W̃ .


Remark 2. The adaptive BDDC method assures that the condition number indicator
ω̃ ≤ τ with the minimum number of added constraints. However, our theory does
not cover the correspondence between the indicator ω̃ and actual condition number of
the preconditioned operator ωBDDC (due to the localization of the global eigenvalue
problem). In [13], it has been shown on a number of experiments that the indicator
agrees very well with the global eigenvalue. It is a subsequent goal also of this paper
to study their relation on experiments.


5. Parallel implementation


In this section, we describe some details of the approach to the parallel implemen-
tation of the adaptive selection of constraints, as it has been recently implemented
as an optional feature of our publicly available solver based on BDDC method, the
BDDCML1 package. This package is written in Fortran 95 programming language
and parallelized using Message Passing Interface (MPI) library.


As was described in the previous section, the main additional work compared to
the standard BDDC method comprises solving a large number of generalized eigen-
problems (21), one for each pair of subdomains sharing a face. From the point of view
of parallel computing, this immediately presents a complication, because the layout
of pairs can be quite different from the natural layout of parallel domain decompo-
sition computation based on distribution by subdomains. This issue is addressed in
the implementation by a separate assignment of eigenproblems to processors, which
is independent of distribution of subdomains.


Note further, that computing the energy scalar products on both sides of prob-
lem (21) corresponds (note the space of discrete harmonic functions) to computing
with Schur complement formed by assembling the Schur complements of subdo-
mains i and j, the Sij. The responsibility of computing with these two components


1http://www.math.cas.cz/∼sistek/software/bddcml.html
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Figure 1: An example of a possible parallel layout of local eigenproblems with com-
munication pattern marked for two of them.


is clearly on the processes which hold subdomains i and j. However, not only that
we do not want to send these dense matrices to the process responsible for the
ij–eigenproblem via network, but these Schur complements are not available explic-
itly. Instead, only multiplication of a vector by them is prepared in the form of
local Dirichlet problems on subdomains i and j. This in turn implies that we need
a method for solving generalized eigenproblems which requires only applications of
the operators on both the left- and right- hand sides on vectors. A recent algorithm
that meets these requirement is the LOBPCG method [6], and its C implementation
is available in the BLOPEX package.


Thus, the process responsible for computing a local ij–eigenproblem sends parts
of the vector for multiplication to processes responsible for subdomains i and j,
which formally multiply these vectors by Si and Sj by solving respective Dirichlet
problems, and then send the results back to initial process. This scheme may lead
to quite complicated communication pattern for general situations (see Figure 1 for
a rather simple example). To somewhat simplify this pattern, the eigenproblems are
solved in turns. In each turn, at most as many eigenproblems are solved as is the
number of available processors. In the beginning of each turn, a new communication
pattern is determined, so that each process knows if it is responsible for an eigen-
value computation and for which other processes it will compute the applications
of local Schur complements. Then, the iterative solution is started. Although some
eigenproblems may require lower number of iterations than others, no other eigen-
problem is solved until all problems in the turn are finished, after which a new group
of eigenproblems is set-up and processed.


The purpose of Adaptive BDDC method is enhancing the robustness of BDDC for
numerically complicated problems. However, it has turned out that for these prob-
lems, convergence of LOBPCG may be very slow without preconditioning. Thus,
we apply a preconditioner for the LOBPCG method, which is nothing else than
the BDDC preconditioner localized to the ij–pair. This preconditioner is build on top
of existing components of BDDC on each subdomain and follows the same commu-
nication pattern as the multiplication by local Schur complements described above,


260







thus does not present much overhead. This strategy was suggested and studied in [13]
on number of experiments.


The LOBPCG method computes only selected number of dominant eigenval-
ues and corresponding eigenvectors. As the computational cost quickly grows with
adding these vectors, we have limited their value to 10 or 15 in our computations.
Maximum number of LOBPCG iterations was limited to 15 and tolerance on residual
set to 10−9. See [13] for details of generation of adaptive constraints.


The BDDCML solver employs the serial MUMPS solver for factorizations of
both subdomain problems (corresponding to Dirichlet problem and the saddle-point
Neumann problem, see e.g. [3]). A parallel instance of the MUMPS solver is then
applied to solution of the explicit global coarse problem.


6. Numerical results


To study robustness of the adaptive BDDC method, we have selected a model
problem of elasticity analysis of a unit cube made of soft material with Young modu-
lus E1 which contains nine stiff rods with Young modulus E2. We study the behaviour
of the BDDC method with respect to value of ‘contrast’ of coefficients, which is de-
fined here as the ratio E2/E1. In our test, we keep E2 = 2.1 · 1011 fixed and compute
E1 based on the desired contrast.


The nonlinear elasticity model with St. Venant–Kirchhoff constitutive law is used.
The considered loading of the problem was small enough so that a single nonlinear
iteration was sufficient to converge to the final solution. A linearized problem (of
one nonlinear iteration) is symmetric positive definite and is passed to the BDDCML
solver.


The cube if fixed at one face orthogonal to the stiff rods and loaded by its own
weight. The domain is discretized by 323, 643, and 1283 tri-linear cubic elements.
Regular divisions into 23 and 43 subdomains are used. This leads to the following
four tested cases: (i) 8 subdomains, H/h = 16, (ii) 8 subdomains, H/h = 32,
(iii) 64 subdomains, H/h = 16, (iv) 64 subdomains, H/h = 32. Due to the set-up,
four stiff rods are punching through faces, which creates one of the least favourable
situations from the point of view of the BDDC or FETI-DP method [11]. Other four
stiff rods are attached to faces and one rod is placed along edges of subdomains in
the centre of the cube.


Figure 2 shows a division of the cube into 8 subdomains and an example of a de-
formed shape of the cube with contrast 10. Presented computations were performed
on the SGI Altix UV machine in the supercomputing centre in Prague. One core of
a CPU was used per subdomain.


For all four tested configurations, we investigate dependence of convergence on
the contrast of coefficients E2/E1. Dependence of condition number is presented in
Figure 3, dependence of number of iterations is presented in Figure 4, and finally
computational times are presented in Figure 5. Each of the cases was computed
using standard BDDC with arithmetic averages on all edges and faces, and adaptive
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Figure 2: Example of division of the cube into 8 subdomains (left) and (magnified)
deformed shape for contrast E2/E1 = 10 coloured by magnitude of displacement
(right).


BDDC with arithmetic averages on edges. Maximum number of adaptive constraints
on a face was set to 10 and 15 and tolerance τ in Algorithm 2. was set to 1.5.


The condition numbers reported in Fig. 3 are estimates from the Lanczos se-
quence in conjugate gradients. We can see how fast the condition number of the
standard BDDC method grows with contrast–the growth is asymptotically linear
with unit slope. The adaptive approach improves the condition number significantly.
However the tolerance applies only for contrast around 103 (10 constraints limit) or
104 (15 constraints limit). Around this point, the adaptive algorithm saturates the
limit of number of constraints on a face for all faces and, consequently, is unable
to keep the condition number low. Until this point, the curves have a plateau, but
tend to grow quickly when reaching the ‘saturation point’. It is interesting to no-
tice that while the indicator of condition number ω̃ (see (22)) approximately follows
the estimated resulting condition number for case of eight subdomains, these curves
departure for the case of 64 subdomains, the indicator being too pessimistic for
10 constraints, and too optimistic for 15. This effect is probably related to different
positioning of the nine stiff rods with respect to the interface.


Similar conclusions can be done based on Fig. 4 with numbers of iterations. Adap-
tive method is able to keep these numbers independent up to the ‘saturation point’,
from which a (delayed) growth begins, being milder for the case of 64 subdomains.


Perhaps the most interesting graphs are those for computational time presented
in Fig. 5. Here we can see the typical behaviour of the standard BDDC method
on this type of problems - while having a very cheap set-up of the preconditioner,
the overall time is determined by the time spent in PCG iterations and grows hand
in hand with this number. It is also worth noting, that we reached stagnation of
PCG for contrast larger than 108 and 105 for 8 and 64 subdomains, respectively.
The situations looks very different for the adaptive BDDC: we pay a large fixed
cost when solving the local eigenproblems as part of the set-up. As the number of
iterations in adaptive BDDC is kept quite low compared to the standard BDDC,
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Figure 3: Estimated condition number with respect to contrast of coefficients;
323 elements, H/h = 16 (top left); 643 elements, H/h = 16 (top right); 643 ele-
ments, H/h = 32 (bottom left); 1283 elements, H/h = 32 (bottom right); ‘av.’ =
averages, ‘10 eigv.’ = at most 10 eigenvectors are used per face, ‘15 eigv.’ = at most
15 eigenvectors are used per face, ‘indicator for adapt.’ stands for the predicted
condition number based on adaptivity indicator ω̃ from (22).


the overall time spent by adaptive BDDC is clearly dominated by the set-up phase,
regardless of the contrast. In fact, the cost slightly decreases for increasing contrast
which is probably related to faster convergence of LOBPCG method. We can also
see, that for 15 constraints, the set-up is yet significantly more expensive than for
10 constraints, without a rewarding improvement of number of iterations. We can
conclude a general statement, that while adaptive BDDC is far too costly for simple
problems at lower contrast, there is a break-point, from which it becomes faster
than the standard BDDC method. This break-point is around contrast 105–106 in
presented computations. It should be also emphasised, that for higher contrasts, we
were only able to obtain results by adaptive BDDC.


7. Conclusion


We have presented a description of a parallel implementation of the Adaptive
BDDC method and a study of its robustness with respect to jumps in material
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Figure 4: Number of iterations with respect to contrast of coefficients; 323 elements,
H/h = 16 (top left); 643 elements, H/h = 16 (top right); 643 elements, H/h = 32
(bottom left); 1283 elements, H/h = 32 (bottom right).


parameters. The parallel implementation faces some difficulties related mainly to
the fact, that parallel layout of the faces among subdomains generally differs from
the natural layout in domain decomposition with subdomains distributed among
processors. This fact complicates an efficient parallel solution of local generalized
eigenproblems used for construction of weighted averages as constraints in BDDC,
and this part typically dominates the whole computational time of the method.


Nevertheless, despite its high cost, it has been shown on a model problem, that
the method significantly improves robustness of the BDDC method, allowing for
solution of problems with much larger contrasts than are manageable by the standard
BDDC with arithmetic averages. For all tested problems, there has been a limiting
contrast, from which computing by standard BDDC was either not possible, or was
more expensive than computing by adaptive BDDC.


It has been shown, that while application of the adaptive BDDC to problems with
low contrasts would be very inefficient and standard BDDC should be preferred, the
method offers an interesting and competitive approach to handle problems with very
large contrasts of coefficients.
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Figure 5: Computational time with respect to contrast of coefficients; 323 elements,
H/h = 16 (top left); 643 elements, H/h = 16 (top right); 643 elements, H/h = 32
(bottom left); 1283 elements, H/h = 32 (bottom right); ‘ad. av.’ = adaptive aver-
ages, ‘arith. av.’ = arithmetic averages, ‘10 eigv.’ = at most 10 eigenvectors are
used per face, ‘15 eigv.’ = at most 15 eigenvectors are used per face.
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0713876. Bedřich Soused́ık acknowledges support from DOE/ASCR. The research
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Abstract


We give a survey of the joint papers of Lawrence Somer and Michal Kř́ıžek and


discuss the beginning of this collaboration.


1. Introduction


In the fall of 1999, I was in Prague on a one-year sabbatical from The Catholic
University of America in Washington, D.C., and was teaching a course entitled “Pri-
mality Testing and Its Application to Cryptography” at the Faculty of Mathematics
and Physics of Charles University. At the same time I met Florian Luca in Prague,
whom I knew from the Fibonacci Conferences. He was preparing with Michal Kř́ıžek
the book, 17 Lectures on Fermat Numbers. Michal had been interested in the topic
of Fermat numbers since he wrote a paper with Jan Chleboun for Mathematica
Bohemica in 1994 on Fermat numbers. In November 1998, Florian Luca also sub-
mitted a paper related to Fermat numbers to Mathematica Bohemica for which
Michal was the referee. Subsequently Michal invited Florian to visit the Institute
of Mathematics in Prague in 1999–2000. While visiting Florian at the Institute, he
introduced me to Michal, and soon after this, both asked me if I wanted to be a third
coauthor of this book. After some thought, I agreed. Thus began my fruitful 12-year
collaboration with Michal that has resulted in 30 joint papers and 2 books, primarily
in the fields of number theory and combinatorics (see [1]–[32]).


Our papers were written in four languages – English, Czech, Spanish, and Chi-
nese. As far as I know, Michal has also published papers in the six additional
languages of Russian, German, Finnish, Dutch, Slovak, Serbo-Croatian.
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2. Some of our most notable results


2.1. Euclidean primes


Euclid’s theorem on the infinitude of primes is usually proved by a contradiction
argument. It is assumed that there are only finitely many primes p1, p2, . . . , pn and
then it is shown that


m = p1p2 · · · pn + 1 (1)


is a new prime or m has a new prime factor different from p1, p2, . . . , pn, which is
a contradiction.


Therefore, primes of the form (1) are called Euclidean primes. For instance,


2+1 = 3, 2 ·3+1 = 7, 2 ·3 ·5+1 = 31, 2 ·3 ·5 ·7+1 = 211, 2 ·3 ·5 ·7 ·11+1 = 2311


are Euclidean primes, but the next term


2 · 3 · 5 · 7 · 11 · 13 + 1 = 59 · 509


is composite.
Let p be a prime and let a be a natural number coprime to p. Then by Fermat’s


little theorem
ap−1 ≡ 1 (mod p).


We call the integer a 6≡ 0 (mod p) a primitive root modulo p if


ak 6≡ 1 (mod p)


for all k ∈ {1, 2, . . . , p−2}. For example, 3 is a primitive root modulo 5, since 3k 6≡ 1
(mod 5) for all k = 1, . . . , 3 (and 34 ≡ 1 (mod 5) by Fermat’s little theorem).


Denote by A(p) the number of primitive roots modulo the prime p. In [20] we
proved that Euclidean primes have the minimum possible number of primitive roots.


Theorem 1. If p is a Euclidean prime, then for all primes q < p we have


A(q)


q
>


A(p)


p
.


2.2. Fermat primes


Recall that
Fm = 22


m


+ 1 for m = 0, 1, 2, . . . (2)


are called Fermat numbers. If Fm is prime it is termed a Fermat prime. For instance,


F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537, (3)


are Fermat primes, but F5 is composite.
As contrasted to Euclidean primes which have the minimum possible number of


primitive roots, it is well known that Fermat primes have the maximum possible
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number of primitive roots, namely (Fm − 1)/2 (for a proof of this results see [16]
or [3, p. 51]).


Leonhard Euler proved that any divisor of Fm is of the form k2m+1+1. Édouard
Lucas refined this result by showing that each divisor of Fm > 5 is of the form
k2m+2 + 1. In [3], we proved the following result.


Theorem 2. If k2m+2 + 1 is a prime divisor of a composite Fermat number Fm,
where k = 3, 5 or 6, then Fm has no prime divisor of the form ℓ2m+2 + 1, where
1 ≤ ℓ < k, and k2m+2 + 1 is the smallest prime divisor of Fm.


2.3. Mersenne and Sophie Germain primes


In [19] we provided a relationship between Mersenne and Sophie Germain primes
(see Theorem 3 below). Recall that the number Mp = 2p − 1, where p is prime, is
termed a Mersenne number. If 2p − 1 itself is prime, then it is called a Mersenne
prime. In particular, if


p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, . . .


we get a Mersenne prime.
In 1819, the French mathematician Sophie Germain demonstrated that if p and


2p+ 1 are both prime, then the so-called first case of Fermat’s Last Theorem holds
for the exponent p. Odd primes p for which 2p + 1 is also a prime are thus called
Sophie Germain primes. For example 5, 11, and 23 are Sophie Germain primes.


Furthermore, we examine some connections of number theory with graph theory.
We assign to each pair of positive integers k ≥ 2 and n a digraph G(n, k) whose set
of vertices is H = {0, 1, . . . , n − 1} and for which there exists a directed edge from
a ∈ H to b ∈ H if ak ≡ b (mod n). The cycles of length q are said to be q-cycles.
All cycles are assumed to be oriented counterclockwise (see Figure 1 for n = 47).


In [19] we proved the following relatively simple statements.
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Figure 1: Iteration digraph corresponding to n = 47.
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Theorem 3. Let Mq be a Mersenne prime with q > 2. Then there does not exist
a Sophie Germain prime p such that G(2p+ 1, 2) contains a q-cycle.


We proved the following characterization of Sophie Germain primes.


Theorem 4. Let p be a Sophie Germain prime. Then G(2p + 1, 2) has two trivial
components: the isolated fixed point 0 and the component {1, 2p} having the fixed
point 1. Each of the other components has 2t vertices and contains a t-cycle. The
number of directed edges coming into a vertex of a t-cycle is exactly 2.


See Figure 1 for the iteration digraph G(2p + 1, 2), where p = 23 is a Sophie
Germain prime.


If the quadratic congruence


x2 ≡ a (mod p)


has no solution x then a is said to be a quadratic nonresidue modulo p.


Theorem 5. Let p be a Sophie Germain prime. Then all quadratic nonresidues are
primitive roots modulo 2p+1, except for exactly one number 2p, which is a quadratic
nonresidue, but not a primitive root.


2.4. Semiregular iteration digraphs modulo n


The indegree of a vertex a ∈ H of G(n, k) is the number of directed edges coming
into a. The digraph G(n, k) is said to be semiregular if there exists a positive integer
d such that each vertex of the digraph has indegree d or 0.


Figure 2: The semiregular iteration digraph G(16, 2).


By Figure 2 we see that G(16, 2) is semiregular. In Theorem 6 which was proved
in [30], we characterize the structure all semiregular digraphs G(n, k).


We use the notation
∏


0


i=1
ai to denote that the corresponding product is empty


and set equal to 1 by convention.
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Theorem 6. Let k ≥ 2 be a fixed integer with the factorization


k = Q


ℓ∏


i=1


pαi


i ,


where each pi is a prime such that gcd(pi − 1, k) = 1 and in addition, ℓ ≥ 1, αi ≥ 1,
and gcd(q − 1, k) > 1 for each prime q dividing Q. Let n ≥ 2 have the prime power
factorization


n = S
ℓ∏


i=1


pβi


i


m∏


i=1


qγii ,


where βi ≥ 0, m ≥ 0, γi ≥ 1, gcd(qi(qi − 1), k) = 1 for i = 1, 2, . . . , m, and
gcd(t− 1, k) > 1 for each prime t dividing S.


Then G(n, k) is semiregular if and only if one of the following conditions holds:


(a) n =
∏ℓ


i=1
pβi


i


∏m
i=1


qi for 0 ≤ βi ≤ αi + 1 and m ≥ 0 when pi is odd for each
i ∈ {1, 2, . . . , ℓ},


(b) n = 2β1 for β1 ∈ {1, 2, 4} when k = 2,


(c) n = 2β1 for 1 ≤ β1 ≤ 5 when k = 22,


(d) n = 2β1 for 1 ≤ β1 ≤ α1 + 2 when p1 = 2 and k ≥ 6.


2.5. Symmetric iteration digraphs modulo n


A component of the iteration digraph is a subdigraph which is a maximal con-
nected subgraph of the associated nondirected graph. The digraph G(n, k) is sym-
metric of order M if its set of components can be partitioned into disjoint subsets,
each containing exactly M isomorphic components.


By Figure 3, the digraph G(39, 3) is symmetric of order 3. Before proceeding
further, we need to define the Carmichael lambda-function λ(n).


Definition 1. Let n be a positive integer. Then the Carmichael lambda-function
λ(n) is defined as follows:


λ(1) = λ(2) = 1,


λ(4) = 2,


λ(2k) = 2k−2 for k ≥ 3,


λ(pk) = (p− 1)pk−1 for any odd prime p and k ≥ 1,


λ(pk11 pk22 · · · pkrr ) = lcm[λ(pk11 ), λ(pk22 ), . . . , λ(pkrr )],


where p1, p2, . . . , pr are distinct primes and ki ≥ 1 for all i ∈ {1, . . . , r}.
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Figure 3: The symmetric iteration digraph G(39, 3) of order 3.


In Theorem 7 which was proved in [31], we give several sufficient conditions for
a digraph G(n, k) to be symmetric of order M ≥ 2.


Theorem 7. Let n = n1n2, where n1 > 1, n2 ≥ 1, and gcd(n1, n2) = 1.


(i) Suppose that n1 = pα, where p is an odd prime and α ≥ 1. Suppose further
that k ≡ 1 (mod p− 1) and pα−1 | k. Then G(n, k) is symmetric of order p.


(ii) Suppose that n1 = 2α, where α ≥ 1. Then G(n, k) is symmetric of order 2 if
one of the following conditions holds:


(a) α ≤ 2, k ≥ 2, and 2α−1 | k,


(b) α ≥ 3, k > 2, and 2α−2 | k,


(c) α = 4 and k = 2.


(iii) Suppose that n1 = q1q2 · · · qs, where the qi’s are distinct primes, not necessarily
odd, and s ≥ 2. Suppose that k ≡ 1 (mod λ(n1)). Then G(n, k) is symmetric
of order n1.


(iv) Suppose that n1 = pαq1q2 · · · qs, where p is an odd prime, α ≥ 2, s ≥ 1, and
the qi’s are distinct primes such that p 6= qi and p ∤ qi − 1 for i = 1, 2, . . . , s.
Suppose further that k ≡ 1 (mod λ(pq1q2 · · · qs)) and pα−1 | k. Then G(n, k) is
symmetric of order pq1q2 · · · qs.
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2.6. Elite primes


Motivated by a generalization of the Pepin primality test (see [3, pp. 42–43])
for Fermat numbers (2), Aigner introduced the notion of elite primes which are the
primes p such that Fm is a quadratic nonresidue modulo p for all but finitely manym.
For example, 3, 5, 7, and 41 are elite primes. Denoting by E the set of all elite primes,
the following statement holds (see [4]):


Theorem 8. The series
∑


p∈E


1


p


is convergent.


Note that
∑


p∈P
1


p
over the set P of all primes is divergent.


Since the sequence of Fermat numbers is eventually periodic modulo any prime p
with at most p distinct elements in the image, the period length tp is bounded
by p and the number of arithmetic operations modulo p to test p for being elite is
bounded by O(p log p). In [2] (published in Journal of Integer Sequences) we showed
that tp = O(p3/4), in particular improving the estimate tp ≤ (p + 1)/4 of Müller
and Reinhart in 2008. The same order of magnitude O(p3/4) is also derived for the
so-called anti-elite primes which are introduced in [2]. This paper generalizes some
of our previous paper [4] published in Journal of Number Theory.


2.7. Šindel sequences


In [10] we found that there is a remarkable relationship between the triangular
numbers Tk = 1+ 2+ · · ·+ k and the bellworks of the astronomical clock (horologe)
of Prague.


Figure 4: The number of bell strokes is denoted by the numbers . . . , 9, 10, 11, 12,
13, . . . along the large gear. The small gear placed behind it is divided by slots into
segments of arc lengths 1, 2, 3, 4, 3, 2.


When the small gear of the bellworks revolves (see Figure 4) it generates by means
of its slots a periodic sequence whose particular sums correspond to the number of
strokes of the bell at each hour:
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1 2 3 4 3 2
︸︷︷︸


5


1 2 3
︸ ︷︷ ︸


6


4 3
︸︷︷︸


7


2 1 2 3
︸ ︷︷ ︸


8


4 3 2
︸ ︷︷ ︸


9


1 2 3 4
︸ ︷︷ ︸


10


3 2 1 2 3
︸ ︷︷ ︸


11


4 3 2 1 2
︸ ︷︷ ︸


12


3 4 3 2 1
︸ ︷︷ ︸


13


2 3 4 3 2
︸ ︷︷ ︸


14


1 2 3 4 3 2
︸ ︷︷ ︸


15


. . . (4)


The mathematical model of the astronomical clock of Prague was prob-
ably invented by Jan Šindel around 1410. In honor of this great achievement we
introduced in [10] a new term, the Šindel sequence {ai} ⊂ N of natural numbers as
such a periodic sequence with period p that satisfies the following condition: for any
k ∈ N there exists n ∈ N such that


Tk = a1 + · · ·+ an. (5)


This condition guarantees a functioning of the bellworks, which is controlled by the
horologe (for details see [10]). In [10] we made a systematic investigation of Šindel
sequences.


In the next theorem from [10] we show that we could continue in (4) indefinitely
in this way. Let


s =


p
∑


i=1


ai.


Theorem 9. A periodic sequence {ai} for s odd is a Šindel sequence if (5) holds for
k = 1, 2, . . . , (s− 1)/2.


In [10] we, moreover, give a necessary and sufficient condition for a periodic
sequence to be a Šindel sequence. We also present an algorithm which produces
the so-called primitive Šindel sequence, which is uniquely determined for a given
s = a1 + · · ·+ ap.


3. Our monographs


In 2001, Michal, Florian Luca, and I published the book 17 Lectures on Fermat
numbers [3] in honor of the 400th anniversary of Fermat’s birth. The book had
3 authors, took 5 years to prepare, consisted of 17 lectures, had 257 pages, and
hopefully will make USD 65 537 in royalties (compare with (3)). This book contains
a lot of known results, but some theorems are also ours. Its second edition appeared
in 2011.


In 2009, Michal, Alena Šolcová, and I published another book Kouzlo č́ısel [26]
(Magic of numbers). This book won the Josef Hlávka Prize for the best scientific book
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published in the Czech Republic in 2009 in the category of the science of inanimate
nature. The second edition of this book appeared in 2011.


Finally, let us mention one interesting result from [26]. Magic squares consisting
solely of primes have been of considerable interest. Based on the Green-Tao theorem,
which states that there are arithmetic progressions of arbitrary length containing only
primes, we proved the following statement.


Theorem 10. For any natural number n there exists a magic square of order n
containing only primes.


This theorem can be easily generalized to any set that contains arithmetic pro-
gressions of arbitrary length.


4. Closing remark


It has been a fruitful twelve years of collaboration with Michal and I look forward
to many more years of joint research.
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[17] Kř́ıžek, M. and Somer, L.: 17 necessary and sufficient conditions for the
primality of Fermat numbers. Acta Math. Inf. Univ. Ostraviensis 11 (2003),
73–79.


[18] Kř́ıžek, M. and Somer, L.: Pseudoprvoč́ısla. Pokroky Mat. Fyz. Astronom. 48
(2003), 143–151.
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[21] Kř́ıžek, M. and Somer, L.: Abelova cena v roce 2008 udělena za objevy v teorii
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[24] Kř́ıžek, M. and Somer, L.: John Tate źıskal Abelovu cenu za rok 2010. Pokroky
Mat. Fyz. Astronom. 55 (2010), 89–96.
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Abstract


This contribution shows how to compute upper bounds of the optimal constant in
Friedrichs’ and similar inequalities. The approach is based on the method of a priori-


a posteriori inequalities [9]. However, this method requires trial and test functions
with continuous second derivatives. We show how to avoid this requirement and how
to compute the bounds on Friedrichs’ constant using standard finite element methods.
This approach is quite general and allows variable coefficients and mixed boundary
conditions. We use the computed upper bound on Friedrichs’ constant in a posteriori
error estimation to obtain guaranteed error bounds.


1. Introduction


This paper is dedicated to the 60th birthday of my teacher, supervisor, colleague,
and good friend Michal Kř́ıžek. Naturally, my first impacted publication [8] was
co-authored by him. In that paper we proposed and analyzed certain a posteriori
error estimates of approximate solutions of partial differential equations. These error
estimates are based on complementary energy and they contain constants which come
from Friedrichs’ inequality and the trace theorem. Consequently, the error estimate
cannot be evaluated unless the value or an upper bound of these constants is known.
This motivates our interest in numerical computations of upper bounds on Friedrichs’
constant.


In general, the presence of the constants from Friedrichs-like inequalities and from
the trace theorems is typical for complementary error bounds (or error majorants),
see [6, 13, 16, 21] and the references therein. These error bounds are not fully reliable
unless upper bounds on the involved constants are computed. These constants can
be obtained from extremal eigenvalues of the corresponding differential operators.
In [18], Friedrichs’ constant is computed by the standard Rayleigh-Ritz method for
approximations of eigenvalues. Although this method is very accurate, it provides
only lower bounds on Friedrichs’ constant.


Computing upper bounds on Friedrichs’ constant or equivalently computing lower
bounds on the corresponding minimal eigenvalue is considerably more difficult. A sur-
vey of available methods can be found in [10]. We concentrate on the method of
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a priori-a posteriori inequalities [9]. This method is quite sensitive to the proper
choice of test and trial functions and in addition, these functions are required to
have continuous second derivatives. Below we show, how to avoid this practically
unpleasant requirement and how to compute the upper bounds on Friedrichs’ con-
stant by the standard finite element techniques.


The rest of this paper is organized as follows. Section 2 briefly recalls the com-
plementary error estimates for a linear second-order elliptic problem with mixed
boundary conditions. Section 3 shows the relation of Friedrichs’ constant and the
smallest eigenvalue of the corresponding eigenproblem. Section 4 describes the
method of a priori-a posteriori inequalities, shows how to overcome the require-
ment of C2 regularity, and introduces an algorithm for computation of the upper
bound on Friedrichs’ constant. Section 5 presents the results of performed numerical
experiments and indicates the accuracy of the proposed approach. Finally, Section 6
draws several conclusions and ideas for future research.


2. Complementary error estimates


Let Ω ⊂ R
d be a domain with Lipschitz boundary. Further let ΓD and ΓN be


relatively open parts of the boundary ∂Ω such that ΓD ∪ ΓN = ∂Ω. Further we
assume that ΓD and ΓN have Lipschitz boundary with respect to ∂Ω and that the
d−1 dimensional measure of ΓD is nonzero. We consider the following model problem:


− divA∇u = f in Ω, u = gD on ΓD, n⊤A∇u = gN on ΓN, (1)


where A ∈ R
d×d is a symmetric and uniformly positive definite tensor and n stands


for the unit outward normal vector to ∂Ω.
We will formulate problem (1) in the weak sense. Therefore, we assume a Dirichlet


lift gD ∈ H1(Ω) of the Dirichlet data gD such that gD = gD on ΓD in the sense of
traces. Further, we define the space


V = {v ∈ H1(Ω) : v = 0 on ΓD in the sense of traces}.


Due to integrability, we consider A ∈ [L∞(Ω)]d×d, f ∈ L2(Ω), and gN ∈ L2(ΓN). The
weak formulation of problem (1) reads: find u ∈ H1(Ω) such that u− gD ∈ V and


a(u, v) = F (v) ∀v ∈ V. (2)


The bilinear and linear forms a(·, ·) and F (·) are given by


a(u, v) =


∫


Ω


(∇v)⊤A∇u dx and F (v) =


∫


Ω


fv dx+


∫


ΓN


gNv dx.


To solve problem (2) approximately, we can use for example the finite element
method. However, for the purpose of this paper we do not assume any particu-
lar method and simply consider any conforming approximation uh ∈ H1(Ω) which
satisfies the Dirichlet boundary conditions, i.e. uh − gD ∈ V .
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The typical complementary estimate of the error u− uh has the form:


|||u− uh||| ≤
∥


∥A−1y −∇uh


∥


∥


A
+ CF ‖f + div y‖0 + CT ‖gN − y · n‖0,ΓN


(3)


for any y ∈ H(div,Ω), see [2, 5, 6, 7, 13, 16, 21]. The symbol |||v|||2 = a(v, v) stands
for the energy norm, ‖·‖0 denotes the L2(Ω) norm, ‖·‖0,ΓN


is the L2(ΓN) norm, and


‖y‖2A =
∫


Ω
y⊤Ay dx. Notice that for problem (1) we have |||v||| = ‖∇v‖A for all


v ∈ V . The constants CF and CT come from the following variants of Friedrichs’
inequality and the trace theorem [12]:


‖v‖0 ≤ CF|||v||| and ‖v‖0,ΓN
≤ CT|||v||| ∀v ∈ V. (4)


Let us note that besides the complementary error estimates a variety of
other approaches for a posteriori error estimation exists. For example explicit and
implicit residual estimates, hierarchical estimates, estimates based on postprocessing
and estimates of a quantity of interest. For more information see books [1, 3, 4, 22]
and the references therein.


The standard techniques scarcely yield a guaranteed upper bound on the error
u − uh, however, the a posteriori error estimate (3) does. For successful practical
implementation of this error bound it is crucial to find a suitable vector
field y ∈ H(div,Ω). This issue is addressed for example in [2, 7, 15, 20] etc.
A straightforward approach is to minimize the right-hand side of (5) over a suitable
finite dimensional subspace and we will not discuss this issue any further. The second
issue is the correct value for the constants CF and CT.


First, we point out that it is relatively simple to eliminate the trace constant CT


from (3). It suffices to choose the vector field y ∈ H(div,Ω) such that y · n = gN
on ΓN. Estimate (3) then simplifies to


|||u− uh||| ≤
∥


∥A−1y −∇uh


∥


∥


A
+ CF ‖f + div y‖0 (5)


for all y ∈ H(div,Ω) satisfying y · n = gN on ΓN.
In principle, we can use the same trick and get rid of Friedrichs’ constant CF


as well. Construction of a suitable vector field y satisfying both the boundary con-
dition y · n = gN on ΓN and the equilibration condition f + div y = 0 in Ω is
described in [19, 20]. However, practical implementation of this approach is difficult
in general and, moreover, it need not to be optimal for certain problems. Therefore,
we concentrate on estimate (5) in what follows.


In case of the Laplacian, the value of Friedrichs’ constant CF can be found
explicitly for simple domains (balls, rectangles, cuboids, etc.) and for special com-
binations of Dirichlet and Neumann boundary conditions. See [10] for examples on
rectangles and balls and [14] for an example on equilateral triangle.


However, these situations are rare. Practically, we have to use suitable upper
bounds for this constant. In certain situations the upper bounds can be found


280







explicitly. For example, for Laplacian with homogeneous Dirichlet boundary condi-
tions we have an estimate [11]:


CF ≤ 1


π


(


1


|a1|2
+ · · ·+ 1


|ad|2
)−1/2


,


where |a1|, . . . , |ad| are lengths of sides of a d-dimensional box in which the domain Ω
is contained.


Anyway, this explicit upper bound is exceptional. The most of practical problems
requires numerical computation of an upper bound of the constant CF. A method
yielding this upper bound is discussed in the following section.


3. Eigenvalue problems


The optimal constants in Friedrichs’ inequality from (4) is clearly given by


CF = sup
06=v∈V


‖v‖0
|||v||| .


If we set λ1 = 1/C2
F then this expression can be equivalently formulated as


λ1 = inf
06=v∈V


|||v|||2
‖v‖20


.


This is the infimum of the generalized Rayleigh quotient corresponding to the fol-
lowing eigenvalue problems


a(ui, v) = λi(ui, v) ∀v ∈ V, (6)


where we use the notation (u, v) =
∫


Ω
uv dx for the L2(Ω) inner product. Thus,


the smallest eigenvalue λ1 of this eigenproblem is related to the optimal constant in
Friedrichs’ inequality from (4) as CF = 1/


√
λ1.


A standard numerical approach for approximate solution of differential eigenprob-
lems is the Rayleigh-Ritz method. This method minimizes the Rayleigh quotients
over a finite dimensional subspace Vh ⊂ V :


λh
1 = inf


06=vh∈Vh


|||vh|||2
‖vh‖20


. (7)


However, this is clearly an upper bound of the exact eigenvalue, i.e. we have λ1 ≤ λh
1 .


Consequently, the value 1/
√


λh
1 is a lower bound of the constant CF.


The desired computation of the lower bound of the smallest eigenvalue λ1 is
a much more difficult task in general. A survey of available methods is provided
in [10]. In the following section we concentrate on the method of a priori-a posteriori
inequalities [9, 17].
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4. Lower bounds of the smallest eigenvalues


Kuttler and Sigillito published in [9] the following result.


Theorem 1. Let H be a separable Hilbert space. Let A : H 7→ H be a symmetric
operator with dense domain D(A). Let A have pure point spectrum {λi} with cor-
responding orthonormal eigenvectors {ui} which are complete in H. Let A∗ be an
extension of A, so D(A) ⊂ D(A∗) ⊂ H with A∗u = Au for all u ∈ D(A).


For any number λ∗ and any u∗ ∈ D(A), suppose there exist w ∈ D(A∗) satisfying


A∗w = A∗u∗ − λ∗u∗ and w − u∗ ∈ D(A).


Then


min
i


∣


∣


∣


∣


λi − λ∗


λi


∣


∣


∣


∣


≤ ‖w‖H
‖u∗‖H


.


We will use this result to compute a lower bound for the smallest eigenvalue of
problem (6) in a similar way as in [9]. However, in [9] the authors rely on the strong
formulation of the eigenvalue problem and therefore they need C2 regularity of the
test and trial functions. We will use the weak formulations and utilize the standard
finite element basis functions which need not to be C2 regular.


The unique solvability of problem (2) with gD = 0 and gN = 0 guarantees the
existence of a unique solution u ∈ V such that equality (2) holds for any f ∈ L2(Ω).
Consequently, we have well defined operator B : L2(Ω) 7→ V such that Bf = u. The
image Im(B) contains those functions u ∈ V that solve (2) for some f ∈ L2(Ω) with
gD = 0 and gN = 0. Furthermore, this f ∈ L2(Ω) is unique due to the density of V
in L2(Ω). Thus, we define the operator A : Im(B) 7→ L2(Ω) such that Au = f .


In order to apply Theorem 1 we set H = L2(Ω), D(A) = Im(B), and A∗ = A.
We consider a number λ∗, any u∗ ∈ Im(B), and define the function w ∈ Im(B) by


a(w, v) = a(u∗, v)− λ∗(u∗, v) ∀v ∈ V. (8)


The statement of Theorem 1 then gives


min
i


∣


∣


∣


∣


λi − λ∗


λi


∣


∣


∣


∣


≤ ‖w‖
0


‖u∗‖0
≤ CF


|||w|||
‖u∗‖0


, (9)


where we used Friedrichs’ inequality from (4).
The energy norm |||w||| can hardly be computed exactly and therefore we use the


following theorem to find its upper bound.


Theorem 2. Let w ∈ Im(B) be given by (8). Then


|||w||| ≤
∥


∥∇u∗ −A−1q
∥


∥


A
+ CF ‖λ∗u∗ + div q‖0 ∀q ∈ W, (10)


where W = {q ∈ H(div,Ω) : q · n = 0 on ΓN}.
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Proof. Let us fix any q ∈ W , test (8) by v = w and use the divergence theorem to
express


|||w|||2 = (A∇u∗,∇w)− λ∗(u∗, w)− (q,∇w)− (div q, w)


=
(


A(∇u∗ −A−1q),∇w
)


− (λ∗u∗ + div q, w).


The Cauchy-Schwarz inequality and Friedrichs’ inequality from (4) yield


|||w|||2 ≤
∥


∥∇u∗ −A−1q
∥


∥


A
‖∇w‖A + CF ‖λ∗u∗ + div q‖0 |||w|||.


Recalling the equality ‖∇w‖A = |||w|||, we finish the proof.


The upper bound of Friedrichs’ constant can be computed from the lower bound
for the smallest eigenvalue λ1 of problem (6). We proceed as follows. We compute
a sufficiently accurate Rayleigh–Ritz approximation λh and the corresponding ap-
proximate eigenfunction uh ∈ Vh ⊂ V . We assume that λ1 is the closest eigenvalue
to λh. We put λ∗ = λh and u∗ = uh. With these data we compute an approximate
minimizer qh ∈ W of the upper bound (10), see Section 5 for technical details. We
put α = ‖∇uh −A−1qh‖A / ‖uh‖0, β = ‖λhuh + div qh‖0 / ‖uh‖0 and use the fact
that CF = 1/


√
λ1. Inequalities (9) and (10) then yield the estimate


λh − λ1


λ1


≤ 1√
λ1


(


α +
1√
λ1


β


)


.


This is equivalent to the quadratic inequality 0 ≤ X2+αX+β−λh, where X =
√
λ1.


Solving this inequality we obtain the lower bound


X2
2 ≤ λ1, where X2 =


(


√


α2 + 4(λh − β)− α
)


/2.


Consequently, we have the upper bound on Friedrichs’ constant


CF ≤ 1/X2.


5. Numerical experiments


In order to compute an upper bound on Friedrichs’ constant, we proceed as
described above. The idea is to compute an approximate minimizer qh ∈ W of
the right-hand side of the estimate (10). This right-hand side is not a quadratic
functional in q and, moreover, it contains the unknown Friedrichs’ constant CF.
Since it is sufficient to compute an approximate minimizer qh ∈ W only, we replace
in (10) the constant CF by its approximation 1/


√
λh where λh is obtained by the


Rayleigh-Ritz method. Further, we use the elementary inequality


(a+ b)2 ≤ (1 + ̺−1)a2 + (1 + ̺)b2 ∀̺ > 0, a, b ∈ R
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ΓD


ΓN


ΓD ΓN


Figure 1: The domain, the initial mesh and the sets ΓD and ΓN used in Example 1
(left) and 2 (right).


and instead of (10) we actually minimize


(1 + ̺−1)
∥


∥∇u∗ −A−1q
∥


∥


2


A
+


1 + ̺


λh
‖λ∗u∗ + div q‖20 (11)


over all ̺ > 0 and q ∈ Wh, where Wh is a suitable finite dimensional subspace of W .
For fixed ̺, the expression (11) is already a quadratic functional in q. After the
substitution λ∗ = λh and u∗ = uh, the minimization of (11) over Wh is equivalent to
the following problem: find qh ∈ Wh such that


(div qh, divψh)+
λh


̺
(A−1qh,ψh) =


λh


̺
(∇uh,ψh)−(λhuh, divψh) ∀ψh ∈ Wh. (12)


This problem can be approached by the standard Raviart-Thomas finite elements.


Example 1: Let us consider the Poisson equation in rectangle Ω = (0, 2)× (0, 1)
with mixed homogeneous boundary conditions:


−∆u = f in Ω, u = 0 on ΓD, n⊤∇u = 0 on ΓN. (13)


We define ΓD = ∂Ω ∩ {(x1, x2) : x1 < 2 − 2x2} and ΓN = ∂Ω ∩ {(x1, x2) : x1 >
2 − 2x2}, see Figure 1 (left). For testing purposes, let us choose the right-hand
side f(x1, x2) = 5π2/16 sin(πx1/4) sin(πx2/2) such that the exact solution to (13) is
u(x1, x2) = sin(πx1/4) sin(πx2/2). Clearly, this u is the eigenfunction corresponding
to the smallest eigenvalue λ1 = 5π2/16 of the eigenproblem


−∆ui = λiui in Ω, ui = 0 on ΓD, n⊤∇ui = 0 on ΓN. (14)


We solve problem (13) by the standard finite element method with continuous
and piecewise linear test functions with respect to a triangulation of Ω. The roughest
triangulation has four elements and it is depicted in Figure 1 (left). Subsequently,
we compute a sequence of finite element solutions uh on a sequence of successively
and uniformly refined meshes.
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Figure 2: The lower and upper bounds for Friedrichs’ constant.


We use (5) to estimate the error u−uh. To evaluate the right-hand side of (5) we
need a value for CF. In this example the exact value is known to be CF = 1/


√
λ1 =


4/(
√
5π). However, we do not use this value and we use its upper bound computed


by minimization of (11). More precisely, we set ̺ = 1 and in order to test the
approach, we solve (12) in two subspaces W 1


h and W 2
h , where


W p
h = {ψh ∈ W : ψh is piecewise polynomial of degree at most p}, p = 1, 2.


The spaces W 1
h and W 2


h correspond to linear and quadratic Raviart-Thomas finite
elements. The solutions q1h ∈ W 1


h and q2h ∈ W 2
h of (12) are used as described at


the end of Section 4 to compute lower bounds on the smallest eigenvalue λ1 and
consequently the upper bounds on Friedrichs’ constant CF. We use the standard
Rayleigh-Ritz method with Vh = {vh ∈ V : vh is piecewise linear} to compute the
lower bound on CF, see (7). The results are presented in Figure 2 (left).


The sharpest bounds were obtained on the finest mesh (the initial mesh refined
five times, in total 4096 triangles). The lower bound C low


F rounded down, the exact
value CF, and the upper bound Cup


F rounded up were


C low
F = 0.5693, CF = 0.5694, Cup


F = 0.6075.


The upper bound Cup
F can be improved by proper choice of the parameter ̺. In this


case, the upper bound decreases for great values of ̺. Setting ̺ = 106, we calculate
a sharper bound Cup


F = 0.6004.
We use this value in (5) to obtain guaranteed error bounds on |||u − uh|||. The


results are presented in Figure 3 (left). The right-hand side of (5) is minimized in
the same way as the right-hand side of (10). We present results obtained by linear
(denoted by p = 1 in Figure 3) and quadratic (denoted by p = 2) Raviart-Thomas
finite elements. We also show a lower bound computed simply from a reference
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Figure 3: Lower and upper bounds on the energy norm of the error.


solution uref
h ∈ V ref


h . If Vh ⊂ V ref
h ⊂ V , u ∈ V is given by (2) and if uh ∈ Vh and


uref
h ∈ V ref


h are the corresponding Galerkin approximations of u then it is easy to
show that


|||u− uh|||2 = |||u− uref
h |||2 + |||uref


h − uh|||2.
Consequently, the easily computable quantity |||uref


h −uh||| =
(


|||uref
h |||2 − |||uh|||2


)1/2
can


be used as a lower bound on the error |||u − uh|||. In this example, the space V ref
h


is based on a mesh that is constructed by seven uniform refinements of the initial
mesh, i.e. it has 65 536 triangles. However, we note that more efficient methods for
computing the lower bounds of the error exist and should be used, see e.g. [1].


In addition, since the exact solution is known, we can verify that the true error
lies really within the computed bounds. It is indeed the case, but due to readability
of Figure 3 (left), we do not plot it. Further, we note that taking the exact value CF


in (5) has no significant effects on the presented error bounds.


Example 2: Let us consider the same setting as in Example 1. The only difference
is another choice of sets ΓD and ΓN. We set ΓD = ∂Ω ∩ {(x1, x2) : x2 < 1} and
ΓN = ∂Ω∩{(x1, x2) : x2 > 1}, see Figure 1 (right) for an illustration. For this choice
the exact solution to problem (13) as well as to the eigenproblem (14) is unknown.
Moreover, the exact solution has singularities at points (1, 0) and (1, 1).


Using the same methods as in Example 1, we compute the bounds for Friedrichs’
constant CF. The results are summarized in Figure 2 (right). The sharpest bounds
were again obtained on the finest mesh. The properly rounded results were


C low
F = 0.7750, Cup


F = 0.8712.


The upper bound was computed for ̺ = 1, but as in Example 1, we can improve it
by choosing ̺ = 106 and obtain Cup


F = 0.8557.
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By the experience from Example 1, we expect the exact value of CF to be close
to C low


F . However, to be on the safe side, we use Cup
F = 0.8557 to compute the


guaranteed bounds of the error u− uh by (5). The same approach as in Example 1
yields the results shown in Figure 3 (right).


6. Conclusions


This contribution presents an approach for computing upper bounds on Friedrichs’
constant and illustrates the usage of these upper bounds in a posteriori error esti-
mation for guaranteed upper bound on the error. In contrast to [9] we do not need
the C2 regularity of the test and trial functions and we can use the standard finite
element methods. The performed numerical experiments show that it suffices to
compute the upper bound by the linear Raviart-Thomas finite elements. However,
the usage of quadratic Raviart-Thomas elements yields relatively sharp results even
on very rough meshes.


The combination of the presented approach with the classical Rayleigh-Ritz
method enables to compute both lower and upper bound on Friedrichs’ constant.
This provides very good information about the accuracy of the obtained approxima-
tions. Similarly, two-sided error bounds can be computed for numerical solutions of
linear elliptic differential equations. Interestingly, in both cases it is quite easy to
compute the lower bounds, but is much more difficult to compute the upper bounds.


Furthermore, let us point out that the computed bounds are not truly guaranteed,
because the calculations are polluted by the quadrature and round-off errors. Both
the error bound (5) as well as the eigenvalue bounds (8)–(9) assume that all involved
integrals and arithmetic operations are performed exactly.


Anyway, the presented concept is not limited to Friedrichs’ constant only. It can
be used to bound the constants in the Poincaré inequality, in various trace inequal-
ities, etc. A list of useful corresponding differential eigenproblems is given in [17].
The computed bounds of these constants have applications for wide range of differ-
ential operators including fourth-order operators. The method easily incorporates
additional terms in the differential operator (e.g. reaction term), it is suitable for
variable coefficients and mixed boundary conditions.


Thus, the future research in this area can concentrate on various generalizations
of the presented approach. It is desirable to analyze the method and prove its
convergence. From practical point of view there is a potential for improving both
accuracy and performance of numerical computations. This interesting and practical
area of research promises new results and we plan to work it out in near future.
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[5] Hlaváček, I.: Some equilibrium and mixed models in the finite element method.
In: Mathematical models and numerical methods (Papers, Fifth Semester, Stefan
Banach Internat. Math. Center, Warsaw, 1975), Banach Center Publ., vol. 3,
pp. 147–165. PWN, Warsaw, 1978.


[6] Korotov, S.: Two-sided a posteriori error estimates for linear elliptic problems
with mixed boundary conditions. Appl. Math. 52 (2007), 235–249.
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Abstract


Precession is the secular and long-periodic component of the motion of the Earth’s
spin axis in the celestial reference frame, approximately exhibiting a motion of about
50′′ per year around the pole of the ecliptic. The presently adopted precession model,
IAU2006, approximates this motion by polynomial expansions of time that are valid,
with very high accuracy, in the immediate vicinity (a few centuries) of the reference
epoch J2000.0. For more distant epochs, this approximation however quickly deviates
from reality. As a reaction to this problem, a new model, comprising very long-period
terms fitted to a numerical integration of the motion of solar system bodies on scales
of several thousand centuries, was recently published by the present author with
co-authors from France and United Kingdom in Astronomy & Astrophysics. Here
a shorter description of the new model, including a new assessment of its accuracy
and comparisons with other models, is given.


1. Introduction


The axis of rotation of the Earth is not stable in the inertial reference frame, i.e.,
among the stars. Under the dominant influence of the Moon and the Sun, it exhibits
a rather complicated motion, called precession-nutation. Its very long-periodic part,
precession, is the slow motion of the pole of Earth’s rotation around the pole of
the ecliptic. The angle between the two poles (obliquity) is approximately constant,
roughly equal to 23.5◦. Precession was known already to Hipparchos, since it causes
the growth of ecliptical longitudes of the stars by about 50′′ per year; the axis of
rotation of the Earth makes one revolution in about 26 thousand years. This motion
is however not so simple: the pole of the ecliptic itself is not stable with respect to
the stars – it exhibits so called precession of the ecliptic (formerly called planetary
precession). It is dominantly caused by the attractive forces of all bodies of the solar
system on the motion of the Earth around the barycenter of the solar system. The
axis of rotation of the Earth exhibits a motion around the moving pole of ecliptic
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Figure 1: Different models of precession in the interval ±200cy around J2000.0.


under the torques exerted by the Moon, Sun, and planets on the rotating oblate
Earth, called precession of the equator (formerly luni-solar precession), but neither
obliquity, nor the rate of precession are strictly constant.


All precession models used so far are expressed in terms of polynomial devel-
opment of time, no matter which of the many precession parameters (see below)
are used. Model IAU2006 [2] is very accurate, but usable only for a limited time
interval (several centuries around the epoch J2000); its errors rapidly increase with
longer time spans. In reality, precession represents a complicated, very long-periodic
process, with periods of hundreds of centuries. This can be seen in numerically inte-
grated equations of motion of the Earth in the solar system and its rotation [11], [12].
Fig. 1 (here reproduced from paper [11]) displays the motion of the axis of rotation
of the Earth during about 1.5 precession cycles, as given by long-term numerical in-
tegration (LT integration) and different analytical models – Lieske et al. [7], Simon
et al. [8], and two models by Capitaine et al. [2] (computed from the expansions of
precession angles ζA, θA and of direction cosines XA, YA, respectively). The position
of the axis of rotation at the basic epoch J2000.0 is the point X = Y = 0, pole of
the ecliptic is approximately in the center of the figure. The models are not graph-
ically distinguishable in the interval ±50cy around J2000, but they start to differ
significantly outside the interval ±100cy.
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We assume that precession covers only periods longer than 100 centuries; shorter
ones are included in the nutation. The goal is to find relatively simple expressions
of different precession parameters, with accuracy comparable to the IAU2006 model
near the epoch J2000.0, and lower accuracy outside the interval ±1000 years (up
to several minutes of arc at the extreme epochs ±200 thousand years). The paper
describing the new model in detail has recently been published [13]. Below is the
concise description of the model, followed by an assessment of its accuracy and
comparison with other models.


2. Numerical integration, long-term expressions of precession parameters


We used the numerically integrated values of the following four parameters


• the precession of the ecliptic PA = sin πA sinΠA, QA = sin πA cosΠA, calculated
with the Mercury 6 package by Chambers [3], and


• the general precession/obliquity pA, εA, provided by Laskar et al. [5]


to calculate time series for the other precession parameters in the interval ±200 thou-
sand years from J2000.0, with 100-year steps.


To estimate the precision of the numerical integrations above, we tested them
against the values obtained independently:


• Precession of the ecliptic PA, QA (in which relativistic effects were neglected)
was compared with the values p = sin i/2 sinΩ, q = sin i/2 cosΩ (where
i = πA is the inclination and Ω = ΠA longitude of the ascending node of the
Earth’s orbit with respect to the plane of ecliptic for J2000.0), obtained by
Laskar et al. [5] by a different method with slightly different initial values,
relativistic effects included. Obvious relations PA = 2p


√
1− p2 − q2, QA =


2q
√
1− p2 − q2 were used, and comparison showed that the differences are only


a few milliarcseconds near the epoch J2000.0 and do not exceed 20 arcseconds
at the extreme epochs. The neglected perturbations by asteroids have recently
been shown by Aljabaae and Souchay [1] to be very small - peak to peak quasi-
periodic effects in Earth’s inclination are smaller than 0.05′′, the periods are
typically shorter than 100 years.


• Similarly, the comparison between different numerical integrations of the obliq-
uity εA by Laskar et al. ([5], [6]) demonstrates that the differences do nor exceed
the level of several arcseconds at the extreme epochs.


Thus we concluded that the precision of the numerical integration, including both
numerical errors and imperfections of the model used, is sufficient for our purpose.


The central part (±1000 years from the epoch J2000.0) was then replaced by
IAU2006 values to make the new model consistent with the model accepted by the
IAU. From the values of the precession parameters PA, QA, pA and ϵA, different
precession parameters were calculated in the interval ±200 millennia from J2000.0,
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Figure 2: Precession parameters.


solving several spherical triangles depicted in Fig. 2. C◦ and C denote the positions
of the pole of ecliptic at the epochs J2000.0 and T , respectively, P◦, P are the poles
of rotation of the Earth and Υ◦, Υ vernal points at the same epochs, CIO stands for
Celestial Intermediate Origin.


We obtained first the auxiliary angles α, β, µ from the spherical triangle ΥΥ◦N:


cos β = cosΠA cos(ΠA + pA) + sinΠA sin(ΠA + pA) cos πA


sin β sinα = sinΠA sinπA (1)


sin β cosα = cosΠA sin(ΠA + pA)− sinΠA cos(ΠA + pA) cos πA


sin β sinµ = sin(ΠA + pA) sin πA


sin β cosµ = sinΠA cos(ΠA + pA)− cosΠA sin(ΠA + pA) cos πA,


then the angles η, δ by solving the triangle ΥΥ◦Pt:


cos η = sin β sin(εA + α)


sin η sin δ = cos(εA + α) (2)


sin η cos δ = − cos β sin(εA + α)
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and, from triangle Υ◦PtP◦, we got the precession angles θA, ζA:


cos θA = − sin η sin(µ+ δ − ε◦)


sin θA sin ζA = − sin η cos(µ+ δ − ε◦) (3)


sin θA cos ζA = cos η.


From the triangle P◦PtC◦ followed the precession parameters ωA, ψA:


cosωA = cos ε◦ cos θA + sin ε◦ sin θA sin ζA


sinωA sinψA = sin θA cos ζA (4)


sinωA cosψA = sin ε◦ cos θA − cos ε◦ sin θA sin ζA,


and from the triangles PtCC◦, P◦PtC◦ the parameters χA, zA:


sin εA sinχA = PA cosψA +QA sinψA


sin εA cosχA = cos πA sinωA − (PA sinψA −QA cosψA) cosωA


sin θA sin(zA + χA) = sinωA cos ε◦ − cosωA sin ε◦ cosψA (5)


sin θA cos(zA + χA) = sin ε◦ sinψA.


Instead of precession angles θA, zA, ζA we use direction cosines XA= sin θA cos ζA,
YA= − sin θA sin ζA, VA= sin θA sin zA, WA= sin θA cos zA; the angles θA, ζA and zA
exhibit large discontinuities (of about 94◦ for θA, 180


◦ for ζA and zA) at irregular
intervals: there is a change of sign approximately each 26,000 years. This makes the
long-term analytical approximation of these precession angles extremely difficult,
while the direction cosines are continuous.


The time series of all parameters calculated above were then approximated by
a cubic polynomial plus up to 14 long-periodic terms of the general form (T is the
time in centuries from J2000.0, Pi is the period and n the number of periodic terms)


a+ bT + cT 2 + dT 3 +
n∑


i=1


(Ci cos 2πT/Pi + Si sin 2πT/Pi) , (6)


so that the fit is best around J2000.0. This was assured by choosing appropriate
weights (equal to 104 in the central part and to 1/T 2 outside this interval). The peri-
ods were found beforehand using the Vańıček’s method [9], modified by Vondrák [10],
and verified with the ones found by Laskar et al. [5], [6] from much longer time se-
ries. Weighted least-squares estimation was then used to determine the sine/cosine
amplitudes of individual periodic terms.


We derived the long-term expressions of the following precession parameters,
some of them being precession angles, some direction cosines (expressed in terms of
certain precession angles):


• precession angles: pA, εA, ωA, ψA, χA, φ, γ, ψ;


• direction cosines: PA = sin πA sinΠA, QA = sin πA cosΠA, XA = sin θA cos ζA,
YA = sin θA sin ζA, VA = sin θA sin zA, WA = sin θA cos zA.


We also derived the expression for the CIO locator (the part that is due to preces-
sion), sA. All these angles are depicted in Fig. 2.
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2.1. Example


As a typical example, the long-term expressions of direction cosines of the pole
Pt, XA, YA (in arcseconds), are given below:


XA = 5453.282155 + 0.4252841T − 0.00037173T 2 − 152× 10−9T 3 +
∑


X ,


YA = −73750.930350− 0.7675452T − 0.00018725T 2 + 231× 10−9T 3 +
∑


Y ,


where the cosine/sine amplitudes of the periodic parts
∑


X ,
∑


Y are displayed in
Tab. 1. The comparisons of the long-term models of precession angles XA(top)
and YA (bottom) are shown in Fig. 3. The model and integrated values are so close
that they are graphically indistinguishable. One can readily see that the expressions
for XA, YA of IAU2006 model quickly deviate from the former ones. The behavior of
other precession parameters is similar.
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Figure 3: Long-term model of precession parameters XA, YA – new model (dotted),
integrated values (solid), and IAU2006 (dashed).


2.2. Alternative parametrization of precession matrix


Different combinations of the precession angles derived above can be used to
compute precession matrix P, necessary to transform coordinates of celestial bodies
from the fundamental epoch J2000.0 to any epoch T :


• ‘Lieske’ parametrization [7]: P = R3(−zA).R2(θA).R3(−ζA),
• ‘Capitaine’ parametrization [2]: P = R3(χA).R1(−ωA).R3(−ψA).R1(ε◦),


• ‘Williams-Fukushima’ parametrization [4]:P=R1(−εA).R3(−ψ).R1(φ).R3(γ),


in which Ri(α) denotes the rotation matrix around i−th axis by angle α. In the clas-
sical ‘Lieske’ parametrization the precession angles zA, θA, ζA can be easily expressed
in terms of direction cosines XA, YA, VA,WA. Quite naturally, all these methods
should theoretically lead to the same result.


295







term C/S XA[
′′] YA[


′′] P [cy]


p C1 -819.940624 75004.344875 256.75
S1 81491.287984 1558.515853


−σ3 C2 -8444.676815 624.033993 708.15
S2 787.163481 7774.939698


p− g2 + g5 C3 2600.009459 1251.136893 274.20
S3 1251.296102 -2219.534038


p+ g2 − g5 C4 2755.175630 -1102.212834 241.45
S4 -1257.950837 -2523.969396


−s1 C5 -167.659835 -2660.664980 2309.00
S5 -2966.799730 247.850422


−s6 C6 871.855056 699.291817 492.20
S6 639.744522 -846.485643


p+ s4 C7 44.769698 153.167220 396.10
S7 131.600209 -1393.124055


p+ s1 C8 -512.313065 -950.865637 288.90
S8 -445.040117 368.526116


p− s1 C9 -819.415595 499.754645 231.10
S9 584.522874 749.045012
C10 -538.071099 -145.188210 1610.00
S10 -89.756563 444.704518
C11 -189.793622 558.116553 620.00
S11 524.429630 235.934465


2p+ s3 C12 -402.922932 -23.923029 157.87
S12 -13.549067 374.049623
C13 179.516345 -165.405086 220.30
S13 -210.157124 -171.330180
C14 -9.814756 9.344131 1200.00
S14 -44.919798 -22.899655


Table 1: Periodic terms in XA, YA.


3. Estimation of model accuracy, comparison with other models


In paper [13] the accuracy was estimated using a simple expression based on
the average uncertainty of all parameters (derived from the fit to integrated values)
and weights at different epochs. Here a rigorous formula is used, based on the full
variance-covariance matrix. The result is depicted in Fig. 4, where the accuracy of
each estimated parameter is given and compared with the one from the paper [13]. It
is clear that our previous estimate was too pessimistic – the rigorous estimate yields
much smaller uncertainties for all parameters, in some cases as much as two orders
of magnitude lower.


The comparison of the new long-term solution with other models of precession
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Figure 5: Comparison of different precession models with integrated values.


(XA and YA parameters only) is given in Figs 5 and 6. XA and YA values as com-
puted from the values of ζA, θA by Lieske et al. [7], Simon et al. [8] and Capitaine
et al. [2] (denoted as Lieske, Simon, IAU2006ζθ) and computed directly from the
XA, YA expressions of Capitaine et al. [2] and paper [13] (denoted as IAU2006XY ,
LT model) are compared with the numerically integrated values.


Fig. 5 depicts the comparison in the interval ±300 centuries from J2000.0, while
Fig. 6 shows only the central part (±10 centuries from J2000.0) at an enlarged scale.
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Figure 6: Comparison of precession models – closeup of the central part.


One can see that the direct IAU2006 expressions for direction cosines XA, YA yield
much worse results than using the expressions for ‘traditional’ precession angles ζA, θA
for more distant epochs. The new LT model is indistinguishable from the integration
at this scale, whereas all other models display deviations reaching 50 degrees for
epochs more distant than 200 centuries. Fig. 6 clearly demonstrates the correction
of precession rate, and also the quadratic term in obliquity, introduced in all models
with respect to Lieske et al. [7]. On the other hand, all models shown are consistent
with the numerically integrated precession within one arcsecond or so in the interval
±10 centuries from J2000.0.


4. Conclusions


The presently adopted IAU2006 model provides high accuracy over a few centuries
around the epoch J2000.0. For longer periods, polynomial development of precession
angles ζA, θA should be preferable to direct XA, YA expressions. More than five
thousand years from the fundamental epoch J2000.0 the model rapidly goes away
from reality. The new model of precession, developed in paper [13] and valid over
±200 millennia, is presented. Its accuracy is comparable to IAU2006 model in the
interval of several centuries around J2000.0, and it fits the numerically integrated
position of the pole for longer intervals, with gradually decreasing accuracy (several
arcminutes ±200 thousand years away from J2000.0). The estimated accuracy, as
given in paper [13], is too pessimistic.
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Abstract


In this paper, we discuss the numerical methods for a class of convex boundary


control problems. The boundary element method is applied for the approximations


of the problems. The a posteriori error estimators for the boundary element approxi-


mations are presented, which can be applied as the indicators of the adaptive mesh


refinement of the related boundary element methods.


1. Introduction


In this paper, we consider the numerical methods for the boundary control prob-
lem governed by the elliptic partial differential equations. It is described as follows:


min
u∈Λ


{


1


2


∥


∥


∥


∥


∂y


∂n
− q0


∣


∣


∣


∣


2


−1,∂Ω


+
α


2
‖u‖20,∂Ω


}


(1.1)


subject to


−∆y = 0 in Ω (1.2)


y = Bu on ∂Ω.


Note that the control is applied only on the boundary of domain, and the objective
functional is also only defined by the boundary information of the control and state.
It is reasonable to use the boundary element method instead of the finite element
method to make the numerical approximation for above boundary control problem.


Although the boundary element method and adaptive boundary element method
are useful methods for the numerical approximations of the partial differential equa-
tions and have been investigated deeply (see, e.g., [8], [9] and [15], for more details),
there are only a few work on the boundary element methods for the optimal control
problem governed by partial differential equations (see, e.g., [13]), where the a priori
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error estimates are presented. While there are many work on a priori and a poste-
riori error estimates of the finite element method for the optimal control problem
governed by partial differential equations (see, e.g., [10], [12]), and some related work
on the optimal control problem governed by integral equations (see, e.g., [4]).


In this paper, we provide the boundary element scheme for the the boundary
control problem (1.1)-(1.2). The a posteriori error estimate are presented, which can
be used as the indicator for the adaptive mesh refinement of the boundary element
methods. Note that in this scheme, the control u only belongs to L2(∂Ω), then the
condition of smooth boundary instead of piecewise Lipschitz boundary is required.
This restricts the application of the scheme, and more research should be completed
to extend the related results to more practical cases. The techniques on residual
type a posteriori error estimates for boundary element methods on partial differential
equations (see, e.g., [5]) are applied in this paper. But to our best knowledge, this
kind of a posteriori error estimates for boundary element methods on boundary
control problems is new.


The plan of the paper is as follows. In Section 2, the model problem of the
boundary control problem governed by elliptic partial differential equations is de-
scribed, and the boundary element scheme is presented for the model problem. Then
the a posteriori error estimates for the boundary element method are discussed in
Section 3.


2. Boundary control problem and boundary element scheme


Let Ω be a bounded open set in R2 with smooth (C∞) boundary ∂Ω. We adopt
the standard notation Wm,q(Ω) for Sobolev spaces on Ω with norm ‖ · ‖m,q,Ω and
semi-norm | · |m,q,Ω. We denote Wm,2(Ω) by Hm(Ω), with norm ‖ · ‖m,Ω and semi-
norm | · |m,Ω. In addition, c and C denote generic positive constants which can be
different in different places.


Let us consider the convex boundary control problem governed by elliptic partial
differential equation:


min
u∈Λ


{


1


2


∥


∥


∥


∥


∂y


∂n
− q0


∥


∥


∥


∥


2


−1,∂Ω


+
α


2
‖u‖20,∂Ω


}


(2.1)


subject to


−∆y = 0 in Ω,


y = Bu on ∂Ω, (2.2)


where B is a linear operator from L2(∂Ω) to L2(∂Ω), q0 ∈ H−1(∂Ω) is a given
function, Λ is a convex subset in the space U := L2(∂Ω), Ω ⊂ R2 is a bounded
domain, n is the outward normal of ∂Ω. In this paper, let


Λ = {v ∈ L2(∂Ω) : v ≥ β},
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where β is a constant. Above boundary control problem (2.1)-(2.2) was discussed
in page 77 of [11]. Because we only can apply Bu on the boundary by the control


u ∈ L2(∂Ω), we have y ∈ H
1


2 (Ω) and ∂y


∂n
∈ H−1(∂Ω). The related regularity can be


found in [11].
Let γ(·, ·) be the fundamental solution of equation (2.2), such that


γ(x, y) =
1


2π
log |x− y|.


Moreover, set


V φ(z) = −2


∫


∂Ω


φ(x)γ(z, x)dsx,


Kφ(z) = −2


∫


∂Ω


φ(x)
∂


∂nx


γ(z, x)dsx,


K ′φ(z) = −2


∫


∂Ω


φ(x)
∂


∂nz


γ(z, x)dsx.


Then it is well known (see e.g. [7]) that


V : H−
1


2 (∂Ω) → H
1


2 (∂Ω), (2.3)


K : H
1


2 (∂Ω) → H
1


2 (∂Ω), (2.4)


K ′ : H−
1


2 (∂Ω) → H−
1


2 (∂Ω) (2.5)


are linear and continuous, K ′ is the dual of K, and V is symmetric.
Setting q = ∂y


∂n
, the equation (2.2) can be rewritten to the boundary integral


equation:
V q(z) = KBu(z) +Bu(z) z ∈ ∂Ω. (2.6)


Similar to (2.3), we have V : H−1(∂Ω) → L2(∂Ω). Then, noting that V q, KBu,
Bu ∈ L2(∂Ω), the equation (2.6) can be rewritten to the standard Galerkin formu-
lation:


(V q, φ) = (KBu, φ) + (Bu, φ) ∀φ ∈ L2(∂Ω).


Moreover, we can use ‖V (q−q0)‖
2
0,Ω to replace ‖q−q0‖


2
−1,∂Ω = ‖ ∂y


∂n
−q0‖


2
−1,∂Ω in (2.1).


Therefore, the control problem (2.1)-(2.2) can be rewritten to


min
u∈Λ


{
1


2
‖V (q − q0)‖


2
0,∂Ω +


α


2
‖u‖20,∂Ω} (2.7)


subject to
(V q, φ) = (KBu, φ) + (Bu, φ) ∀φ ∈ L2(∂Ω), (2.8)


where (·, ·) presents the inner product in L2(∂Ω).
Using the standard method in [11], it can be proven that the problem (2.7)-(2.8)


has a solution (q, u) ∈ H−1(∂Ω) × L2(∂Ω), and that the pair (q, u) is a solution
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of (2.7)-(2.8) if and only if there exists a co-state p ∈ L2(∂Ω) such that the triple
(q, p, u) satisfies the optimality condition:


(V q, φ) = (KBu, φ) + (Bu, φ) ∀φ ∈ L2(∂Ω) (2.9)


(p, V ψ) = (V (q − q0), V ψ) ∀ψ ∈ H−1(∂Ω) (2.10)


(αu+B∗K ′p+B∗p, v − u) ≥ 0 ∀v ∈ Λ ⊂ L2(∂Ω), (2.11)


where B∗ is the adjoint operator of B.
Next, let us consider the boundary element approximation of the control prob-


lem (2.7) and (2.8).
Let T h be a partitioning of ∂Ω into disjoint segmental arc τ , so that ∂Ω =


⋃


τ∈Th τ̄ .
Set W h ⊂ H1(∂Ω) to be a finite-dimensional subspace related on the partition T h,
such that χ|τ are polynomials of order m (m ≥ 1) for all χ ∈ W h and τ ∈ T h (see,
i.e., [15] and [16]). It is easy to see that W h ⊂ H1(∂Ω) ⊂ L2(∂Ω) ⊂ H−1(∂Ω).


Similarly, let T h
U be a partitioning of ∂Ω into disjoint segmental arc τU , so that


∂Ω =
⋃


τU∈Th


U


τ̄U . Again, set U
h ⊂ L2(∂Ω) to be another finite-dimensional subspace


related on the partition T h
U , such that χ|τU are polynomials of order m (m ≥ 0) for


all χ ∈ Uh and τU ∈ T h
U . Note that there is no continuity requirement for Uh. It is


easy to see that Uh ⊂ U = L2(∂Ω).
Let hτ (hτU ) denote the maximum length of the element τ (τU ) in T


h (T h
U ). Let


h = maxτ∈Th hτ (hU = maxτU∈Th


U


hτU ). Let Λ
h = Λ ∩ Uh be a close convex set. Note


that the regularity of the optimal control u is limited. It is only in H1(∂Ω) in general,
because of the structure of Λ and the inequality (2.11). Therefore, there will be no
advantage in considering higher-order finite element spaces for Uh. We only consider
the piecewise linear and piecewise constant finite element spaces forW h and Uh, i.e.,
W h = {w ∈ H1(∂Ω) : w|τ ∈ P1} and Uh = {w ∈ L2(∂Ω) : w|τU ∈ P0} in this paper,
where P1 denotes the linear function space, and P0 denotes the 0-order polynomial
space.


Using above boundary element space, the boundary element approximation of
the control problem (2.7) and (2.8) is defined by


min
uh∈Λ


h


{


1


2
‖V (qh − q0)‖


2
0,∂Ω +


α


2
‖uh‖


2
0,∂Ω


}


(2.12)


subject to
(V qh, φh) = (KBuh, φh) + (Buh, φh) ∀φh ∈ W h. (2.13)


Similar to the continuous problem (2.7)-(2.8), the control problem (2.12)-(2.13) has
a solution (qh, uh), and that a pair (qh, uh) is a solution of (2.12)-(2.13) if and only if
there exists a co-state ph ∈ V h such that the triple (qh, ph, uh) satisfies the following
optimality conditions:


(V qh, φh) = (KBuh, φh) + (Buh, φh) ∀φh ∈ W h ⊂ L2(∂Ω) (2.14)


(ph, V ψh) = (V (qh − q0), V ψh) ∀ψh ∈ W h ⊂ H−1(∂Ω) (2.15)


(αuh +B∗K ′ph +B∗ph, vh − uh) ≥ 0 ∀vh ∈ Λh ⊂ Λ ⊂ U = L2(∂Ω). (2.16)
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3. A posteriori error analysis


In this section, we will discuss the a posteriori error estimates of the boundary
element methods provided in the last section. In order to do it, let us divide ∂Ω into
three subdomains:


∂Ω− := {x ∈ ∂Ω : (B∗K ′ph +B∗ph)(x) ≤ −αβ},


∂Ω+ : {x ∈ ∂Ω : (B∗K ′ph +B∗ph)(x) > −αβ, uh > β},


∂Ω0 : {x ∈ ∂Ω : (B∗K ′ph +B∗ph)(x) > −αβ, uh = β}.


Then we have the following a posteriori error estimates:


Theorem 3.1. Let (y, p, u) and (yh, ph, uh) be the solutions of the systems
(2.9)–(2.11) and (2.14)–(2.16), respectively. Then,


‖q − qh‖
2
−1,∂Ω + ‖p− ph‖


2
0,∂Ω + ‖u− uh‖


2
0,∂Ω ≤ C(η21 + η22 + η23), (3.1)


where


η21 = ‖B∗K ′ph +B∗ph + αuh‖
2
0,∂Ω−∪∂Ω+ ,


η22 = ‖V qh −KBuh −Buh‖
2
0,∂Ω,


η23 = ‖ph − V (qh − q0)‖
2
0,∂Ω.


Proof. Let q(uh) and p(uh) be the solutions of the auxiliary equations:


(V q(uh), φ) = (KBuh, φ) + (Buh, φ) ∀φ ∈ L2(∂Ω) (3.2)


(p(uh), V ψ) = (V (q(uh)− q0), V ψ) ∀ψ ∈ H−1(∂Ω). (3.3)


It follows from (2.11) that


α‖u− uh‖
2
0,∂Ω =(αu, u− uh)− (αuh, u− uh)


≤− (B∗K ′p+B∗p, u− uh)− α(uh, u− uh)


=(B∗K ′(p− p(uh)), uh − u) + (B∗(p− p(uh)), uh − u) (3.4)


+ (B∗K ′(p(uh)− ph), uh − u) + (B∗(p(uh)− ph), uh − u)


+ (B∗K ′ph +B∗ph + αuh, uh − u).


It follows from (2.9)-(2.10) and (3.2)-(3.3) that


(B∗K ′(p− p(uh)), uh − u) + (B∗(p− p(uh)), uh − u)


= (B∗K ′(p− p(uh)) +B∗(p− p(uh)), uh − u)


= (p− p(uh), KB(uh − u) +B(uh − u))


= (V (q(uh)− q), p− p(uh)) = (p− p(uh), V (q(uh)− q)) (3.5)


= (V (q − q0), V (q(uh)− q))− (V (q(uh)− q0), V (q(uh)− q))


= (V (q − q(uh)), V (q(uh)− q)) ≤ 0.
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Hence, (3.4) and (3.5) imply that


α‖u−uh‖
2
0,∂Ω ≤ C‖p(uh)−ph‖0,∂Ω‖u−uh‖0,∂Ω+(B∗K ′ph+B


∗ph+αuh, uh−u). (3.6)


Note that


(B∗K ′ph +B∗ph + αuh, uh − u) =


∫


∂Ω−∪∂Ω+


(B∗K ′ph +B∗ph + αuh)(uh − u)


+


∫


∂Ω0


(B∗K ′ph +B∗ph + αuh)(uh − u), (3.7)


and
∫


∂Ω−∪∂Ω+


(B∗K ′ph+B
∗ph+αuh)(uh−u) ≤ ‖B∗K ′ph+B


∗ph+αuh‖0,∂Ω−∪∂Ω+‖u−uh‖∂Ω.


(3.8)
Moreover, note that B∗K ′ph + B∗ph + αβ > 0 and uh = β on ∂Ω0, and u ≥ β on
whole ∂Ω. We have that
∫


∂Ω0


(B∗K ′ph+B
∗ph+αuh)(uh−u) =


∫


∂Ω0


(B∗K ′ph+B
∗ph+αβ)(β−u) ≤ 0. (3.9)


Summing up, it follows from (3.7)-(3.9) that


(B∗K ′ph +B∗ph + αuh, uh − u) ≤ ‖B∗K ′ph +B∗ph + αuh‖0,∂Ω−∪∂Ω+‖u− uh‖∂Ω


= η1‖u− uh‖∂Ω. (3.10)


Thus, (3.6) and (3.10) lead to


‖u− uh‖0,∂Ω ≤ C‖p(uh)− ph‖0,∂Ω + Cη1. (3.11)


Next, let us consider the estimate of ‖p(uh) − ph‖0,∂Ω. Let V ψ = ph − p(uh). It
follows from (2.15) and (3.3) that


‖ph − p(uh)‖
2
0,∂Ω = (ph − p(uh), V ψ) = (V (ph − p(uh)), ψ)


= (V ph, ψ)− (V (q(uh)− q0), V ψ)


= (ph − V (qh − q0), V ψ) + (V (qh − q(uh)), V ψ)


≤ (‖ph − V (qh − q0)‖0,∂Ω + ‖V (qh − q(uh))‖0,∂Ω)‖V ψ‖0,∂Ω


= (η3 + ‖V (qh − q(uh))‖0,∂Ω)‖ph − p(uh)‖0,∂Ω.


Then, we have that


‖ph − p(uh)‖0,∂Ω ≤ (η3 + ‖V (qh − q(uh))‖0,∂Ω). (3.12)


Similarly, let φ = V (qh − q(uh)). It follows from (2.14) and (3.2) that


‖V (qh − q(uh))‖
2
0,∂Ω = (V (qh − q(uh)), φ)


= (V qh, φ)− (KBuh − Buh, φ)


≤ ‖V qh −KBuh +Buh‖0,∂Ω‖φ‖0,∂Ω


= η2‖V (qh − q(uh))‖0,∂Ω,
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and hence,
‖V (qh − q(uh))‖0,∂Ω ≤ η2. (3.13)


It can be deduced from (3.12) and (3.13) that


‖ph − p(uh)‖
2
0,∂Ω + ‖V (qh − q(uh))‖


2
0,∂Ω ≤ C(η22 + η23). (3.14)


Then, (3.11) and (3.14) lead to


‖u− uh‖
2
0,∂Ω ≤ C(η21 + η22 + η23). (3.15)


Let V ψ = p− p(uh). It follows from (2.10) and (3.3) that


‖p− p(uh)‖
2
0,∂Ω = (p− p(uh), V ψ) = (V (q − q(uh)), V ψ)


≤ ‖V (q − q(uh))‖0,∂Ω‖V ψ‖0,∂Ω (3.16)


= ‖V (q − q(uh))‖0,∂Ω‖p− p(uh)‖0,∂Ω.


Similarly, let φ = V (q − q(uh)). It can be deduced from (2.9) and (3.2) that


‖V (q − q(uh))‖
2
0,∂Ω = (V (q − q(uh)), φ) = (KB(u− uh) +B(u− uh), φ)


≤ ‖KB(u− uh) +B(u− uh)‖0,∂Ω‖φ‖0,∂Ω (3.17)


≤ C‖u− uh‖0,∂Ω‖V (q − q(uh))‖0,∂Ω.


Then (3.16) and (3.17) imply that


‖p− p(uh)‖0,∂Ω ≤ ‖V (q − q(uh))‖0,∂Ω ≤ C‖u− uh‖0,∂Ω. (3.18)


Moreover, note that


‖qh − q‖−1,∂Ω ≤ ‖qh − q(uh)‖−1,∂Ω + ‖q(uh)− q‖−1,∂Ω, (3.19)


‖ph − p‖0,∂Ω ≤ ‖ph − p(uh)‖0,∂Ω + ‖p(uh)− p‖0,∂Ω. (3.20)


Therefore, it follows from (3.14)-(3.15) and (3.18)-(3.20) that


‖ph − p‖20,∂Ω + ‖V (qh − q)‖20,∂Ω ≤ C(η21 + η22 + η23). (3.21)


Then, (3.1) is the direct result of (3.15) and (3.21).
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I encountered Professor Kř́ıžek for the first time when he defended his CSc.-degree;
I was a member of the committee. One of his results fascinated me. It has the fol-
lowing form:


Kř́ıžek’s lemma (on a decomposition of a polygon and a polyhedron into
convex components)


a) For every polygon Ω there exists a finite number of convex polygons with
mutually disjoint interiors the union of which is Ω.


b) For every polyhedron Ω there exists a finite number of convex polyhedrons
with mutually disjoint interiors the union of which is Ω.


Definition. a) By a polygon we understand every nonempty, bounded and closed
domain in R


2 the boundary of which can be expressed as a union of a finite number
of segments.
b) By a polyhedron we understand every nonempty, bounded and closed domain
in R


3 the boundary of which can be expressed as a union of a finite number of
polygons with mutually disjoint interiors.


Proof of Kř́ı̌zek’s lemma. The proof is presented in the three-dimensional case; this
part of Lemma will play a fundamental role in the proof of the Gauss–Ostrogradskij
theorem. In the two-dimensional case the proof is analogous but simpler.


The proof is a part of the proof of a more general theorem (see [2]). However,
because of the importance of the lemma we reproduce the corresponding part of
Kř́ıžek’s proof in a slightly extended form.


Let Ω be an arbitrary polyhedron and let π1, . . . , πm be polygons the union of
which is the boundary ∂Ω. Let ̺1, . . . , ̺m be such planes that πi ⊂ ̺i, i = 1, . . . , m.
It may happen that some of these planes coincide. Without loss of generality let us
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assume that ̺1, . . . , ̺k (k ≤ m) are mutually different planes and each ̺i (k < i ≤ m)
belongs to the set {̺1, . . . , ̺k}. Let Ω1, . . . ,Ωr ⊂ R3 be all connected components


of the set Ω \
k⋃


i=1


̺i (i.e., the connected components which arise after “cutting up”


the polyhedron Ω by the planes ̺i). The number of these components is finite (at
most 2k). We assert that Ωj (j = 1, . . . , r) are the sought convex polyhedrons. First


we show that Ωj are open sets. As ∂Ω ⊂
k⋃


i=1


̺i we have


Ω \
k⋃


i=1


̺i = Ω \
k⋃


i=1


̺i.


This set is open because Ω is an open set and
k⋃


i=1


̺i is a closed set, and components


of an open set are open.
Further we prove the convexity of Ωj . Let j ∈ {1, . . . , r} be an arbitrary fixed


integer. Each plane ̺i (i = 1, . . . , k) divides the space R
3 into two half-spaces. Let


us denote by Qi the closed half-space, which is bounded by the plane ̺i and which


contains Ωj , and let us denote M :=
k⋂


i=1


Qi. Then we have Ωj ⊂ M . The converse


inclusion will be proved by contradiction. Let us assume that there exists a point
P ∈ M \ Ωj . As Ωj is a closed set we have R = dist (P,Ωj) > 0; this means that


M \ Ωj ⊃ M ∩ SR(P) 6= ∅,


where SR(P) is an open ball of the radius R and with the center at P . Let X ∈
M ∩ SR(P) be a point that does not belong to any plane ̺1, . . . , ̺k and let Y be an
arbitrary interior point of Ωj (such a point certainly exists because Ωj is a domain).
Then inside the segment XY there exists such a point Z that Z ∈ ∂Ωj (because
X /∈ Ωj). As Z is a boundary point of Ωj there exists a plane ̺s (1 ≤ s ≤ k) such
that Z ∈ ̺s and this plane separates the points X a Y because X /∈ ̺s, Y /∈ ̺s.
This implies that X /∈ Qs, which contradicts the fact that X ∈ M ⊂ Qs. Hence


Ωj =
k⋂


i=1


Qi


and this intersection is evidently bounded and has at least one interior point. In
other words, Ωj is a convex polyhedron.


Further, the definition of components Ωj (j = 1, . . . , r), i.e., the relation


Ω \
k⋃


i=1


̺i =


r⋃


j=1


Ωj ,


implies immediately that Ω =
r⋃


j=1


Ωj. �
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The rest of the paper is devoted to a very important application of Kř́ıžek’s
lemma – the proof of a general form of the Gauss-Ostrogradskij theorem.


1. The elementary form of the Gauss–Ostrogradskij theorem


Definition 1. a) A bounded domain Ω ⊂ R
3 is called elementary with respect to


the coordinate plane (x, y) if every straight-line p parallel to the z-axis and such that
p ∩ Ω 6= ∅ intersects the boundary ∂Ω at two points or has with ∂Ω a common
segment which can degenerate into a point.
b) Analogously we define domains elementary with respect to the plane (x, z), or with
respect to the plane (y, z).
c) A bounded domain Ω is called elementary if it is elementary with respect to all
three coordinate planes.


Remark 1. Every bounded convex domain is elementary.


Definition 2. a) We say that a set S is a part of a surface which is regular with
respect to the coordinate plane (x, y), if the points [x, y, z] ∈ S satisfy


z = f(x, y), [x, y] ∈ Sxy


where Sxy is a simply connected two-dimensional bounded closed domain lying in the
plane (x, y) which is bounded by a simple piecewise smooth closed curve ∂Sxy, and
f : Sxy → R


1 is a real function continuous on Sxy which has continuous first partial
derivatives fx ≡ ∂f


∂x
, fy ≡ ∂f


∂y
in Sxy (where the symbol Sxy denotes the interior of


S̄xy, i.e., Sxy = S̄xy \ ∂Sxy; these derivatives can be unbounded in Sxy). The closed
domain S̄xy is called the orthogonal projection of the part S̄ onto the plane (x, y).
b) Similarly we say that a set S is a part of a surface which is regular with
respect to the coordinate plane (x, z) (or (y, z)), if the points [x, y, z] ∈ S̄ satisfy


y = g(x, z), [x, z] ∈ S̄xz,


or
x = h(y, z), [y, z] ∈ S̄yz,


where the closed domains Sxz, Syz and the functions g : Sxz → R
1, h : Syz → R


1


have analogous properties as the closed domain Sxy and the function f : Sxy → R
1.


The closed two-dimensional domains Sxz and Syz are called orthogonal projections
of the part S̄ onto the planes (x, z) and (y, z).


Definition 3. We say that a part S has property (R) if it satisfies at least one of
the following three conditions:
a) the part S is regular with respect to all three coordinate planes;
b) the orthogonal projection of the part S onto one of the three coordinate planes
has the two-dimensional measure equal to zero; the part S is regular with respect to
the remaining two coordinate planes;
c) two components of the vector n(x, y, z) equal zero for all points [x, y, z] ∈ S.
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Lemma 1. Let a domain Ω be elementary with respect to the plane (x, y) and let
its boundary ∂Ω consist of a finite number of parts with property (R) which have
mutually disjoint interiors. Then these parts can be divided into three groups with
the following properties:
a) The union of parts belonging to the first group forms a part D̄1 whose points
[x, y, z] satisfy the equation


z = z1(x, y), [x, y] ∈ D̄1
xy, (1)


where z1 is a continuous function.
b) The union of parts belonging to the second group forms a part D̄2 whose points
[x, y, z] satisfy the equation


z = z2(x, y), [x, y] ∈ D̄2
xy, (2)


where z2 is a continuous function. At the same time we have


D̄1
xy = D̄2


xy,


z1(x, y) ≤ z2(x, y) ∀[x, y] ∈ D̄1
xy.


c) The normal vector n = (cosα, cosβ, cos γ) of the parts belonging to the third
group satisfies


cos γ ≡ 0.


The set of the parts belonging to the third group can be empty.


Proof. The assertion is evident. �


Theorem 1. Let the boundary ∂Ω of an elementary domain Ω be the union of
a finite number of parts with property (R). Let functions P,Q,R be continuous
on Ω and let the derivatives ∂P/∂x, ∂Q/∂y, ∂R/∂z be continuous on Ω. Let the
positive direction of the unit normal n be the direction of the outer normal. Then


∫∫∫


Ω


(
∂P


∂x
+


∂Q


∂y
+


∂R


∂z


)
dxdydz =


∫∫


∂Ω


(P dydz +Q dxdz +R dxdy). (3)


Proof. By Lemma 1 and the Fubini theorem


∫∫∫


Ω


∂R


∂z
dxdydz =


∫∫


D1
xy


{∫ z2(x,y)


z1(x,y)


∂R


∂z
dz


}
dxdy =


=


∫∫


D2
xy


R(x, y, z2(x, y)) dxdy −


∫∫


D1
xy


R(x, y, z1(x, y)) dxdy.


(4)
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Owing to the orientation of the normal, we have cos γ < 0 on D1 and cos γ > 0
on D2. Thus (4) can be rewritten in the form (where εz = 1 if γ < π/2 and εz = −1
if γ > π/2)


∫∫∫


Ω


∂R


∂z
dxdydz = εz


∫∫


D2
xy


R(x, y, z2(x, y)) dxdy + εz


∫∫


D1
xy


R(x, y, z1(x, y)) dxdy.


(5)
As the boundary ∂Ω can be expressed as the union of the surfaces (1), (2) and the
parts for which cos γ = 0, the right-hand side of (5) is equal to the surface integral∫∫


∂Ω
R dxdy. Hence ∫∫∫


Ω


∂R


∂z
dxdydz =


∫∫


∂Ω


R dxdy. (6)


Similarly we obtain


∫∫∫


Ω


∂P


∂x
dxdydz =


∫∫


∂Ω


P dydz, (7)
∫∫∫


Ω


∂Q


∂y
dxdydz =


∫∫


∂Ω


Q dxdz. (8)


Summing (6)–(8), we obtain (3). �


Theorem 2. Let a domain Ω be the union of a finite number of elementary domains


Ω
1
, . . . ,Ω


n
which have mutually disjoint interiors. Let the boundary ∂Ωi of each


domain Ωi (i = 1, . . . , n) be the union of a finite number of parts with property (R).
Let functions P,Q,R be continuous on Ω and let the derivatives ∂P/∂x, ∂Q/∂y,
∂R/∂z be continuous on Ω. Let the unit normal n of the boundary ∂Ω be oriented
in the direction of the outer normal. Then


∫∫∫


Ω


(
∂P


∂x
+


∂Q


∂y
+


∂R


∂z


)
dxdydz =


∫∫


∂Ω


(P dydz +Q dxdz +R dxdy). (9)


Proof. The assumption concerning the normal n enables us to orient the normal of
each boundary ∂Ωi in the direction of the outer normal of Ωi; hence


∫∫∫


Ω


(
∂P


∂x
+


∂Q


∂y
+


∂R


∂z


)
dxdydz =


n∑


i=1


∫∫∫


Ωi


(
∂P


∂x
+


∂Q


∂y
+


∂R


∂z


)
dxdydz


=


n∑


i=1


∫∫


∂Ωi


(P dydz +Q dxdz +R dxdy)


=


∫∫


∂Ω


(P dydz +Q dxdz +R dxdy),


because at every point P ∈ Ω which satisfies the relation P ∈ ∂Ωj ∩∂Ωk (j 6= k) two
opposite normals meet - one belonging to ∂Ωj and the other to ∂Ωk. �
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2. A more general form of the Gauss–Ostrogradskij theorem


Verifying the assumptions of Theorem 2 concerning the domain Ω is in most cases
very difficult: Let us consider, for example, a domain (the so called “cheese ball with
many bubbles”)


Ω̄ = K̄0 \
n⋃


i=1


Ki ,


where K̄0, K̄1, . . . , K̄n are balls with properties


K̄i ⊂ K0 (i = 1, . . . , n), K̄i ∩ K̄j = ∅ (i 6= j; i, j = 1, . . . , n).


To make the Gauss–Ostrogradskij theorem applicable in general use we must
substitute its assumption concerning the domain Ω by an assumption which would
enable us to check only the properties of the boundary ∂Ω.


Almost every Czech mathematician knows that satisfactory proofs of Ostrograd-
skij’s theorem are introduced in [1] and [3]. As for me, after having been acquainted
with Kř́ıžek’s lemma I did not seek other proofs.


Definition 4. We say that a part S̄ has property (R∗) (or property (R∗∗)) if it
satisfies conditions a)–c) (or conditions a)–d)) where
a) the part S̄ has property (R);
b) if


z = f(x, y), y = g(x, z), x = h(y, z)


are functions appearing in the analytical expressions of the part S̄ with respect to the
coordinate planes then at least one of the three relations f ∈ C2(S̄xy), g ∈ C2(S̄xz),
h ∈ C2(S̄yz) holds;
c) if meas2Sst > 0, then the boundary ∂Sst is piecewise of class C2 and has no cusp-
points;
d) at least one of the plane domains S̄xy, S̄xz, S̄yz is starlike. (A domain D̄ is starlike
if there exists at least one point Q ∈ D such that every half-line starting from this
point intersects ∂D at just one point.)


Theorem 3 (Gauss–Ostrogradskij). Let Ω be a three-dimensional bounded closed
domain whose boundary ∂Ω is the union of a finite number of parts with property (R∗),
which have mutually disjoint interiors. Let functions


P, Q, R, ∂P/∂x, ∂Q/∂y, ∂R/∂z


be continuous and bounded in a bounded three-dimensional domain Ω̃ satisfying
Ω̃ ⊃ Ω. Let the unit normal n of the boundary ∂Ω be oriented in the direction of
the outer normal of ∂Ω, which exists at almost all points of ∂Ω. Then


∫∫∫


Ω


(
∂P


∂x
+


∂Q


∂y
+


∂R


∂z


)
dxdydz =


∫∫


∂Ω


(P dydz +Q dxdz +R dxdy). (10)


314







Sketch of the proof. In a detailed proof (see [4], or [5], Chapter 20) the theorem is
first proved in the case that the parts forming ∂Ω have property (R∗∗). At the end
it is shown how to change the proof when these parts have only property (R∗).


A) Let us choose δ > 0 arbitrary but fixed (δ < 1). In this part of the proof it is shown
(in details see [4] or [5], Chapter 20) how to approximate a part with property (R∗∗)
by a “panel-shaped” surface which consists of triangular panels whose longest side
has a length which is less or equal to δ. This approximation will be constructed in
such a way that if


∂Ω =
n⋃


i=1


S̄i, Si ∩ Sj = ∅ (i 6= j) (11)


is a decomposition of ∂Ω into parts with property (R∗∗) and S̄δ
i is a panel-shaped


surface approximating S̄i, then


∂Ωδ :=
n⋃


i=1


S̄δ
i (12)


is a boundary of a polyhedron satisfying


Sδ
i ∩ Sδ


j = ∅ (i 6= j; i, j = 1, . . . , n) (13)


and with vertices lying on ∂Ω. The closed bounded three-dimensional domain with
the boundary ∂Ωδ will be denoted by Ω̄δ.


B) As Ω̄δ is a polyhedron, we can express it by Kř́ıžek’s lemma in the form


Ω̄δ =
m⋃


j=1


Ūj, (14)


where Ū1, . . . , Ūm are closed convex polyhedrons. Let us orientate the normal to ∂Uj


as the outer normal of Ūj (j = 1, . . . , m). Relation (14) and the proof of Theorem 2
yield


∫∫∫


Ωδ


(
∂P


∂x
+


∂Q


∂y
+


∂R


∂z


)
dxdydz =


m∑


j=1


∫∫∫


Uj


(
∂P


∂x
+


∂Q


∂y
+


∂R


∂z


)
dxdydz


=
m∑


j=1


∫∫


∂Uj


(P dydz +Q dxdz +R dxdy)


=


∫∫


∂Ωδ


(P dydz +Q dxdz +R dxdy), (15)


because the surface integrals over ∂Uj ∩ ∂Uk altogether cancel.


C) It remains to prove that


lim
δ→0


∫∫∫


Ωδ


(
∂P


∂x
+


∂Q


∂y
+


∂R


∂z


)
dxdydz =


∫∫∫


Ω


(
∂P


∂x
+


∂Q


∂y
+


∂R


∂z


)
dxdydz (16)
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and


lim
δ→0


∫∫


∂Ωδ


(P dydz +Q dxdz +R dxdy) =


∫∫


∂Ω


(P dydz +Q dxdz +R dxdy). (17)


The proof of (17) is long and complicated and we refer to [4], or [5], Chapter 20.
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Abstract


In this paper, we investigate the a priori and the a posteriori error analysis for the
finite element approximation to a regularization version of the variational inequality
of the second kind. We prove the abstract optimal error estimates in the H1- and
L2-norms, respectively, and also derive the optimal order error estimate in the L∞-
norm under the strongly regular triangulation condition. Moreover, some residual–
based a posteriori error estimators are established, which can provide the global upper
bounds on the errors. These a posteriori error results can be applied to develop the
adaptive finite element methods. Finally, we supply some numerical experiments to
validate the theoretical results.


1. Introduction


Many important physics and engineering problems, such as contact with friction,
obstacle problems, problems in plasticity and viscoplasticity, etc.( see, for example,
[4, 8, 10–13]) can be formulated as variational inequalities. The aim of this article is
to present some a priori and a posteriori error estimates based on the finite element
approximation for the following variational inequality: Find u ∈ V such that


a(u, v − u) + jγ(v)− jγ(u) ≥ (f, v − u) ∀v ∈ V, (1.1)


where


a(u, v) =


∫
Ω


(∇u · ∇v + µuv)dx, (f, v) =


∫
Ω


f v dx, (1.2)


jγ(v) =


∫
ΓN


ψ(v)ds, V =
{
v ∈ H1(Ω) : v = 0, on Γ \ ΓN


}
, (1.3)
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and Ω ⊂ R2 is a convex polygonal domain, µ > 0 is a constant, Γ = ∂Ω, ΓN ⊂ Γ,
meas(ΓN) > 0, and


ψ(v) =



gv − γ


2
g2, v ≥ γg,


1
2γ
v2, |v| ≤ γg,


−gv − γ
2
g2, v ≤ −γg,


(1.4)


with the constant g > 0 and the small parameter γ > 0. Problem (1.1)–(1.4) is
a regularization version of the variational inequality of the second kind:


a(u, v − u) + j(v)− j(u) ≥ (f, v − u) ∀v ∈ V, j(v) =


∫
ΓN


g|v|, (1.5)


and when γ → 0, its solution u = uγ converges to the solution u of problem (1.5).
See, for example, [8,10]. Since


|jγ(v)− j(v)| ≤ 1


2
γg2meas(ΓN) ∀v ∈ H1(Ω),


it is easy to see that
‖uγ − u‖1 ≤


√
γ g(meas(ΓN))


1
2 .


Finite element methods for the variational inequalities of the second kinds (includ-
ing their regularization versions) have been studied for many years simply because of
their practical importance, but the bound on the discretization error in the literature
is suboptimal [1, 8–10]. In existing work, the finite element discretizations are di-
rectly applied to the variational inequalities, which makes the finite element analysis
very difficult because of the inequality constraint. In this paper, we establish the
finite element discretization by a different way. We first transform the variational in-
equality problem (1.1) into an equivalent variational problem, and then construct the
finite element approximation and give the unique existence and stability of the finite
element solution. By this approach, we establish the abstract error estimates in the
H1- and L2-norms, respectively, which imply the optimal convergence on both the
approximation order of the finite element space and the regularity required for the
exact solution. In addition, when the solution is smooth enough, we further derive
the optimal order error estimate in the L∞-norm under the strongly regular triangu-
lation condition [17]. Moreover, we study the a posteriori error estimate of the finite
element solution. We know that an a posteriori error estimate is set as a theoretical
basis for the adaptive computations based on h, p, and hp finite element methods,
and in this article, we give some residual-based a posteriori estimators which yield
global upper bounds on the discretization errors in the H1- and L2-norms. It should
be pointed out that for the finite element approximations to variational inequalities
of the second kind (including their regularization forms), it is very difficult to obtain
the optimal order error estimates in the L2- and L∞-norms. Hence, our method and
result here provide some theoretical significance into the literature.
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This paper is organized as follows. In Section 2, we transform the variational
inequality problem (1.1) into an equivalent variational problem, and then construct
the finite element discretization and discuss the unique existence and the stability of
the finite element solution. In Section 3, some abstract error estimates are established
and the optimal order error estimates are derived in the H1-, L2- and L∞-norms,
respectively. Section 4 is devoted to the a posteriori error analysis of the finite
element solution. Finally, in Section 5, we present some numerical examples to
illustrate our theoretical analysis.


In this paper, we adopt the standard notation Wm
p for the Sobolev space on the


domain Ω with the corresponding norm ‖·‖m.p, and when p = 2, Wm
2 = Hm, ‖·‖m,2 =


‖ · ‖m. Denote by (·, ·) and ‖·, ·‖ the inner product and the norm, respectively, in
the L2-space. We will also use the letter C to denote a generic positive constant
independent of the mesh size h.


2. Equivalent problem and its finite element approximation


First we derive the equivalent variational form of problem (1.1). In (1.1) taking
v = u± t w, t > 0, w ∈ V , we obtain


±a(u,w) +


∫
ΓN


ψ(u± tw)− ψ(u)


t
ds ≥ ±(f, w) ∀w ∈ V.


Setting t→ 0+ and noting that


lim
t→0+


ψ(u± tw)− ψ(u)


t
= ±ψ′(u)w = ±ϕ(u)w,


we see that the solution u of problem (1.1) satisfies


a(u, v) +


∫
ΓN


ϕ(u)v ds = (f, v) ∀v ∈ V, (2.1)


where


ϕ(t) = ψ′(t) =



g, t ≥ γg,
t/γ, |t| ≤ γg,
−g, t ≤ −γg.


Formula (2.1) gives the equivalent variational form of problem (1.1)–(1.4).


Lemma 2.1. The function ϕ(t) ∈ H1(−∞,∞) and it satisfies the following Lips-
chitz’s condition and the monotonicity condition:


|ϕ(u)− ϕ(v) | ≤ 1


γ
|u− v | ∀u, v ∈ R, (2.2)


(ϕ(u)− ϕ(v))(u− v) ≥ 0 ∀u, v ∈ R. (2.3)
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Proof. It follows from a straightforward calculation that


ϕ′(t) =



1


γ
, |t| ≤ γg


0, |t| > γg,


and


ϕ(u)− ϕ(v) =


∫ u


v


ϕ′(t) dt =


∫ 1


0


ϕ′(v + τ(u− v)) dτ (u− v),


which, together with ϕ′(t) ≥ 0, leads to (2.2)–(2.3). �


Corollary 2.1. The solution of problem (2.1) is unique and satisfies the inequality


‖u‖1 ≤
1


µ0


‖f‖, where µ0 = min{ 1, µ }.


Proof. Assume that u1 and u2 are the solutions of problem (2.1). Then, we have


a(u1 − u2, v) +


∫
ΓN


(ϕ(u1)− ϕ(u2))v ds = 0, v ∈ V.


Taking v = u1−u2, the uniqueness is obtained by using Lemma 2.1 and the coercivity
of a(u, v). Now setting v = u in (2.1), from Lemma 2.1 we know that ϕ(u)u ≥ 0
(noting that ϕ(0) = 0), which yields


a(u, u) ≤ (f, u).


Thus, the stability estimate is derived. �


From book [8], we have known that there exists a solution u ∈ V to problem (1.1).
Then according to Corollary 2.1 and the equivalence of problems (1.1) and (2.1), we
can conclude that problem (2.1) has a unique solution which is also the unique
solution of problem (1.1).


Let Jh = ∪{e} be a regular finite element triangulation of domain Ω para-
meterized by the mesh size h = max he so that Ω = ∪e∈Jh{ e }, where he is the
diameter of the element e . We assume that the triangulation is made such that the
vertices of ΓN are also the mesh points of the triangulation Jh. Introduce the finite
element space Vh ⊂ V as follows:


Vh = { vh ∈ C(Ω) : vh|e ∈ Pk(e), vh|Γ\ΓN
= 0 ∀e ∈ Jh },


where Pk(e) is the set of polynomials of degree at most k on e. The finite element
approximation of problem (2.1) is defined to seek uh ∈ Vh such that


a(uh, vh) +


∫
ΓN


ϕ(uh)vh ds = (f, vh) ∀vh ∈ Vh. (2.4)
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Theorem 2.1. Problem (2.4) admits a unique solution, which satisfies the stability
estimate


‖uh‖1 ≤
1


µ0


‖f‖.


Proof. It follows from taking vh = uh in (2.4), using Lemma 2.1 and the coercivity
of a(u, v) that we can immediately obtain the stability. Below we discuss the unique
existence.


Let {ψi }Ni=1 be the basis function system of space Vh. Then we can set uh =∑N
i=1 uiψi(x) ∀uh ∈ Vh. Now we rewrite equation (2.4) as


A
→
u +


→
ϕ (
→
u) =


→
f or


→
u= T


→
u= A−1(


→
f −


→
ϕ (
→
u)), (2.5)


where A = (a(ψi, ψj))N×N is a positive definite matrix and


→
u = (u1, u2, · · · , uN )T ,


→
ϕ= (ϕ1, ϕ2, · · · , ϕN )T ,


ϕj =


∫
ΓN


ϕ(
∑
uiψi(x))ψj ds, j = 1, 2, · · · , N.


From Lemma 2.1 we know that
→
ϕ (
→
u) is Lipschitz continuous, and hence the mapping


T : RN → RN is a compact mapping. Furthermore, from the stability estimate, we


see that any solution
→
u of equation:


→
u= σT


→
u, σ ∈ [0, 1],


lies in a bounded set of RN . Then, by the Brouwer fixed point theory (see Theo-
rem 10.3 in [6]), the mapping T has a fixed point in RN , that is, the solution to the
discrete system of equations (2.5) exists. The proof of uniqueness is similar to that
of Corollary 2.1. �


3. A priori error analysis in various norms


Let c0 be the positive constant in the trace theorem such that


‖u‖L2(ΓN ) ≤ c0‖u‖1 ∀u ∈ H1. (3.1)


Theorem 3.1. Let u and uh be the solutions of problems (2.1) and (2.4), respec-
tively, µ1 = max{ 1, µ }. Then, we have the following abstract error estimates in the
H1-norm and the L2-norm:


‖u− uh‖1 ≤
1


µ0


(
µ1 +


c2
0


γ


)
inf
vh∈Vh


‖u− vh‖1, (3.2)


‖u− uh‖ ≤
(
µ1 +


c2
0


γ


)
sup


q∈L2(Ω)


{
1


‖q‖
inf
vh∈Vh


‖w − vh‖1


}
‖u− uh‖1, (3.3)


where, for given q ∈ L2(Ω), w ∈ V is the unique solution of the elliptic problem (3.5)
below.
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Proof. From (2.1) and (2.4) we derive the error equation


a(u− uh, vh) +


∫
ΓN


(ϕ(u)− ϕ(uh))vh ds = 0 ∀vh ∈ Vh. (3.4)


Hence, using Lemma 2.1 and the trace theorem, we have for vh ∈ Vh that


µ0‖u− uh‖2
1 ≤a(u− uh, u− uh)


=a(u− uh, u− vh)−
∫


ΓN


(ϕ(u)− ϕ(uh))(vh − uh) ds


=a(u− uh, u− vh)−
∫


ΓN


(ϕ(u)− ϕ(uh))(vh − u) ds


−
∫


ΓN


(ϕ(u)− ϕ(uh))(u− uh) ds


≤ µ1‖u− uh‖1‖u− vh‖1 +
1


γ


∫
ΓN


|u− uh| | vh − u| ds


≤ µ1‖u− uh‖1‖u− vh‖1 +
c2


0


γ
‖u− uh‖1‖u− vh‖1.


Then, estimate (3.2) is obtained.


In order to derive the error estimate in the L2-norm, let us consider the auxiliary
problem: For any given q ∈ L2(Ω), find w ∈ V such that


A(w, v) = (q, v) ∀v ∈ V, (3.5)


where


A(w, v) = a(w, v) +


∫
ΓN


βw v ds, β(x) =
ϕ(u)− ϕ(uh)


u− uh
. (3.6)


From Lemma 2.1 we know that β(x) ∈ L∞(Ω) and


0 ≤ β(x) ≤ 1


γ
, x ∈ Ω.


This implies from the coercivity of a(u, v) and (3.1) that


µ0‖w‖2
1 ≤ A(w,w), |A(w, v)| ≤


(
µ1 +


1


γ
c2


0


)
‖w‖1‖v‖1 ∀w, v ∈ V.


Thus, we see that A(w, v) is a coercive, symmetric and bounded bilinear form on
V × V , so that the solution w of problem (3.5) uniquely exists. Now, it follows from
taking v = θ = u − uh in (3.5), and utilizing equation (3.4), the definition of β,
Lemma 2.1 and the trace theorem that for vh ∈ Vh we have
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(u− uh, q) = a(θ, w) +


∫
ΓN


βw θ ds


= a(θ, w − vh)−
∫


ΓN


(ϕ(u)− ϕ(uh)) vh ds+


∫
ΓN


βw θ ds


= a(θ, w − vh) +


∫
ΓN


(ϕ(u)− ϕ(uh)) (w − vh) ds


≤ µ1‖u− uh‖1‖w − vh‖1 +
1


γ
c2


0‖u− uh‖1‖w − vh‖1.


Because both q ∈ L2(Ω) and vh ∈ Vh are arbitrary, we arrive at the conclusion
claimed in (3.3). �


Let uI ∈ Vh be the usual interpolation approximation of a continuous function u
with the approximation properties [2]:


‖u− uI‖0,p,e + he‖u− uI‖1,p,e ≤ Ch1+s
e ‖u‖1+s,p,e, 0 < s ≤ k, 2 ≤ p ≤ ∞, e ∈ Jh.


(3.7)
Then, from Theorem 3.1, we immediately obtain the following conclusion.


Corollary 3.1. Let u and uh be the solutions of problems (2.1) and (2.4), respec-
tively. Then, uh converges to u in the H1-norm, and if u ∈ H1+s(Ω) we have


‖u− uh‖1 ≤ Chs‖u‖1+s, 0 < s ≤ k . (3.8)


Furthermore, assuming that the solution w of problem (3.5) belongs to H1+α(Ω),
0 < α ≤ 1 and ‖w‖1+α ≤ C‖q‖, we have


‖u− uh‖ ≤ Chα+s‖u‖1+s, 0 < s ≤ k, 0 < α ≤ 1. (3.9)


Obviously, the error estimates (3.8) and (3.9) (with α = 1) are optimal on both
the approximation order of the finite element space and the regularity required for
the exact solution.


Remark 3.1. According to the regularity theory of elliptic problems [6, 7], when
the domain Ω and function β(x) satisfy some smooth conditions, we indeed have
that the solution w ∈ H2(Ω) and ‖w‖2 ≤ C(Ω)‖q‖.


Below we will discuss the error estimate in the L∞-norm by using the linear finite
element space. We need an additional assumption on the triangulation Jh (see, for
example, [17]).


Definition 31 A quadrilateral ♦ABCD is called an approximate parallelogram if
(see Figure 1)


|
−→
AB −


−→
DC | ≤ Ch2 , |


−→
BC −


−→
AD | ≤ Ch2.
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Definition 32 A triangulation Jh is called strongly regular, if any two adjacent tri-
angular elements of Jh form an approximate parallelogram (see Figure 1).


Under the strongly regular triangulation condition, we have the well known inter-
polation elementary estimate for the linear finite element space Vh (see Theorem 4.8
in [17]).


| a(u− uI , vh) | ≤ Ch2( ‖u‖2,∞ + ‖u‖3) ‖vh‖1, vh ∈ Vh. (3.10)


By means of this estimate, we can prove the following result.


Theorem 3.2. Let u and uh be the solutions of problems (2.1) and (2.4), respec-
tively. Assume that the triangulation Jh is strongly regular, Vh is the linear finite
element space, and u ∈ W 2


∞ ∩H3. Then we have


‖u− uh‖0,∞ ≤ C


(
1 +


1


γ


)
h2| ln h |


1
2 ( ‖u‖2,∞ + ‖u‖3 ).


Proof. It follows from equation (3.4), Lemma 2.1, the elementary estimate (3.10)
and the trace theorem that


µ0‖uI − uh‖2
1 ≤ a(uI − uh, uI − uh)


= a(uI − u, uI − uh)−
∫


ΓN


(ϕ(u)− ϕ(uI) + ϕ(uI)− ϕ(uh))(uI − uh) ds


≤ a(uI − u, uI − uh)−
∫


ΓN


(ϕ(u)− ϕ(uI))(uI − uh) ds


≤ Ch2( ‖u‖2,∞ + ‖u‖3)‖uI − uh‖1 +
1


γ
‖u− uI‖L2(ΓN )‖uI − uh‖L2(ΓN )


≤ Ch2( ‖u‖2,∞ + ‖u‖3)‖uI − uh‖1 + C
1


γ
h2‖u‖3‖uI − uh‖1,
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where we have used the fact that


‖u− uI‖L2(ΓN ) ≤ Ch2‖u‖2,∂Ω ≤ Ch2‖u‖3,Ω,


which results in a super-approximation estimate,


‖uI − uh‖1 ≤ C


(
1 +


1


γ


)
h2( ‖u‖2,∞ + ‖u‖3). (3.11)


Now, we have by using the weak embedding inequality in the finite element space [17]
that,


‖vh‖0,∞ ≤ C| ln h|
1
2‖vh‖1, vh ∈ Vh. (3.12)


Thus, we obtain from (3.11)–(3.12) that


‖u− uh‖0,∞ ≤ ‖u− uI‖0,∞ + C| ln h|
1
2‖uI − uh‖1


≤ ‖u− uI‖0,∞ + Ch2| ln h|
1
2 ( ‖u‖2,∞ + ‖u‖3),


which, together with ‖u− uI‖0,∞ ≤ h2‖u‖2,∞, completes the proof. �


4. A posteriori error analysis


In this section, we will derive some residual-based a posteriori error estimators
which provide global upper bounds and local lower bounds on the error u− uh. To
this end, we need to introduce some notions.


Let Jh be a regular finite element triangulation of domain Ω. We denote by Eh =
∪{ l ⊂ ∂e : e ∈ Jh} the union of all the edges of Jh, and E0


h = ∪{ l ⊂ ∂e\∂Ω : e ∈ Jh}
the union of all the interior edges of Jh. Let l be an edge shared by two adjacent
elements e1 and e2 of Jh, and ni = n|∂ei the unit normal vector external to ∂ei. For


a piecewise smooth function v on triangulation Jh, we define the jump


[
∂v


∂n


]
of
∂v


∂n
on l ∈ E0


h as follows: [
∂v


∂n


]
= ∇v1 · n1 +∇v2 · n2, on l ∈ E0


h,


where ∇vi = ∇v|∂ei is the trace of ∇v from the interior of ei.


Below we assume that there exists an interpolation function πhv ∈ Vh satisfying
that (e.g., the Clément interpolant (see, for example, [3]))


‖v − πhv‖s,e ≤ Ch1−s
e ‖v‖1,ωe , s = 0, 1, v ∈ H1(ωe), e ∈ Jh, (4.1)
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where ωe = ∪{e′ ∈ Jh : e′ ∩ e 6= Ø}. Define the error estimators as follows:


η(s)(uh) =


(∑
e∈Jh


‖hse(f + ∆uh − µuh)‖2
0,e


) 1
2


,


η(s)
b


(uh) =


(∑
l∈E0h


∥∥∥∥hs−1/2
l


[
∂uh
∂n


]∥∥∥∥2


0,l


) 1
2


,


η
(s)
N (uh) =


( ∑
l⊂ΓN


∥∥∥∥hs−1/2
l


(
∂uh
∂n


+ ϕ(uh)


)∥∥∥∥2


0,l


) 1
2


, s ≥ 1,


where hl is the length of the edge l ∈ Eh. Obviously, all these quantities are com-
putable in terms of the finite element solution uh.


Let u ∈ H1(Ω) be the solution of problem (2.1). Following a variational argument,
it is easy to see that u is characterized by the following boundary value problem in
the distribution sense:


−∆u+ µu = f, in Ω, (4.2)


u = 0, on Γ \ ΓN ,
∂u


∂n
+ ϕ(u) = 0, on ΓN . (4.3)


Theorem 4.1. Let u and uh be the solutions of problems (2.1) and (2.4), respec-
tively, u ∈ H1(Ω). Then, there exists a constant C, independent of u, uh, γ and the
mesh size h, such that


‖u− uh‖1 ≤ C(η(1)(uh) + η
(1)
b (uh) + η


(1)
N (uh)). (4.4)


Proof. Denote the error function θ = u − uh. Using the error equation (3.4) and
integration by parts, we have that for vh ∈ Vh,


µ0‖θ‖2
1 ≤a(θ, θ) = a(θ, θ − vh) + a(θ, vh)


=a(θ, θ − vh)−
∫


ΓN


(
ϕ(u)− ϕ(uh)


)
vh


=
∑
e∈Jh


(−∆θ + µθ, θ − vh)e +
∑
e∈Jh


∫
∂e


∂θ


∂n
(θ − vh)−


∫
ΓN


(
ϕ(u)− ϕ(uh)


)
vh


=
∑
e∈Jh


(f + ∆uh − µuh, θ − vh)e +
∑
l∈E0h


∫
l


[
∂θ


∂n


]
(θ − vh)


+


∫
ΓN


∂θ


∂n
(θ − vh)−


∫
ΓN


(
ϕ(u)− ϕ(uh)


)
vh
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=
∑
e∈Jh


(f + ∆uh − µuh, θ − vh)e −
∑
l∈E0h


∫
l


[
∂uh
∂n


]
(θ − vh)


+


∫
ΓN


(
∂θ


∂n
+ ϕ(u)− ϕ(uh)


)
(θ − vh)−


∫
ΓN


(
ϕ(u)− ϕ(uh)


)
θ


≤
∑
e∈Jh


(f + ∆uh − µuh, θ − vh)e −
∑
l∈E0h


∫
l


[
∂uh
∂n


]
(θ − vh)


−
∫


ΓN


(
∂uh
∂n


+ ϕ(uh)


)
(θ − vh),


where in the last inequality, we have utilized the boundary value condition (4.3) and
property (2.3) of function ϕ. By taking vh = πhθ, we obtain


µ0‖θ‖2
1 ≤


∑
e∈Jh


‖f + ∆uh − µuh‖0,e ‖θ − πhθ‖0,e


+
∑
l∈E0h


∥∥∥∥[∂uh∂n


]∥∥∥∥
0,l


‖θ − πhθ‖0,l


+
∑
l⊂ΓN


∥∥∥∥∂uh∂n
+ ϕ(uh)


∥∥∥∥
0,l


‖θ − πhθ‖0,l,


from which and the well known trace inequality (see Lemma 2.3 in [16]), we obtain∫
∂e


|u|2ds ≤ C
(
h−1
e ‖u‖2


0,e + he‖∇u‖2
0,e


)
∀u ∈ H1(e). (4.5)


This, together with the approximation property (4.1), completes the proof. �


In order to derive the a posteriori error estimate in the L2-norm, we need to
introduce the auxiliary problem once again in the distribution sense:


−∆w + µw = u− uh in Ω , (4.6)


w = 0 on Γ \ ΓN ,
∂w


∂n
+ β(x)w = 0 on ΓN , (4.7)


where β(x) = (ϕ(u)− ϕ(uh))/(u− uh). We assume that problem (4.6)–(4.7) admits
a solution w ∈ H1+α(Ω) satisfying


‖w‖1+α ≤ C‖u− uh‖, 0 < α ≤ 1.


Theorem 4.2. Let u and uh be the solutions of problems (2.1) and (2.4), respec-
tively, u ∈ H1(Ω). Then, there exists a constant C, independent of u, uh and the
mesh size h, such that


‖u− uh‖ ≤ C
(
η(1+α)(uh) + η


(1+α)
b (uh) + η


(1+α)
N (uh)


)
, 0 < α ≤ 1. (4.8)
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Proof. Let wI ∈ Vh be the interpolation of function w, θ = u − uh. From equa-
tions (4.6)–(4.7) and the error equation (3.4), we have


‖θ‖2 =a(w, θ)−
∫


ΓN


∂w


∂n
θ = a(w, θ) +


∫
ΓN


βw θ


=a(θ, w − wI)−
∫


ΓN


(
ϕ(u)− ϕ(uh)


)
wI +


∫
ΓN


βw θ


=a(θ, w − wI) +


∫
ΓN


(
ϕ(u)− ϕ(uh)


)
(w − wI)


=
∑
e∈Jh


(f + ∆uh − µuh, w − wI)e +
∑
e∈Jh


∫
∂e


∂θ


∂n
(w − wI)


+


∫
ΓN


(ϕ(u)− ϕ(uh)) (w − wI)


=
∑
e∈Jh


(f + ∆uh − µuh, w − wI)e +
∑
l∈E0h


∫
l


[
∂θ


∂n


]
(w − wI)


+


∫
ΓN


(
∂θ


∂n
+ ϕ(u)− ϕ(uh)


)
(w − wI)


=
∑
e∈Jh


(f + ∆uh − µuh, w − wI)e −
∑
l∈E0h


∫
l


[
∂uh
∂n


]
(w − wI)


−
∫


ΓN


(
∂uh
∂n


+ ϕ(uh)


)
(w − wI).


Then, it follows from using the trace inequality (4.5), the approximation
property (3.7), and noting ‖w‖1+α ≤ C‖θ‖ that the proof is completed. �


In practical finite element computations, it is desirable to implement them in an
adaptive fashion. A typical procedure is to start with a coarse mesh first, and then
use some a posteriori error estimators, say, provided in this section, as a guidance to
properly refine the mesh locally or globally to achieve the desired accuracy. Many
articles have discussed such adaptive algorithms, see, e.g., [5, 14] and the references
therein, so we omit the further discussion here.


5. Numerical experiments


In this section we present some numerical examples to validate our theoretical
analysis. The related data in problem (1.1)–(1.4) are Ω = (0, 1) × (0, 1), µ = 1,
g = 1, ΓN = {x = 1}. We take the exact solution as


uγ(x, y) =


(
sinx− γ cos 1 + sin 1


1 + γ
x


)
sinπy, γ > 0, (x, y) ∈ Ω,
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and the corresponding source term as


f =


(
(2 + π2) sinx− (1 + π2)


γ cos 1 + sin 1


1 + γ
x


)
sin πy.


We first partition Ω into a uniform square of mesh size h, and then divide each
square into two right triangles in the same configuration. The linear finite element
is used in the experiments. Denote by eh the error between the exact solution and
the numerical solution on mesh size h under some suitable norm, and the numerical
convergence order is computed by


α =
ln(eh/e1)


lnh
,


In Table 1 and Table 2, we display the error and orders of convergence for numerical
solutions in the L2- and L∞-norms, respectively. We see that the computation
accuracy is very high and the theoretical orders of convergence are achieved, noticing
that γ << 1.


mesh size γ = 0.01 γ = 0.001


h error order error order


1 3.5617e-1 - 3.6272e-1 -


1/20 0.95e-4 2.7470 0.532e-3 2.1780


1/40 0.59e-4 2.3600 0.487e-3 1.7927


1/60 0.52e-4 2.1571 0.476e-3 1.6208


1/80 0.50e-4 2.0244 0.471e-3 1.5168


1/100 0.42e-4 1.9642 0.368e-3 1.4968


Table 1: Order of convergence in the L2-norm.


In Table 3 we display the approximate a posteriori error bound in the L2-norm
with γ = 0.01 and the effectivity index (see (4.8)),


σ =
ηtol(uh)


‖uγ − uh‖
, ηtol(uh) = η(2)(uh) + η


(2)
b (uh) + η


(2)
N (uh).


As expected, we see that the error estimator ηtol(uh) is effective, that is, σ ∼ 1.
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mesh size γ = 0.01 γ = 0.001


h error order error order


1 3.8343e-1 - 3.8851e-1 -


1/20 0.180e-3 2.5582 0.167e-2 1.8178


1/40 0.172e-3 2.0899 0.168e-2 1.4758


1/60 0.172e-3 1.8829 0.168e-2 1.3295


1/80 0.172e-3 1.7593 0.168e-2 1.2422


1/100 0.172e-3 1.6741 0.168e-2 1.1820


Table 2: Order of convergence in the L∞-norm.


mesh size h 1 1/20 1/40 1/60 1/80 1/100


ηtol(uh) 1.9407 0.503e-3 0.280e-3 0.172e-3 0.157e-3 0.120e-3


σ 5.4487 5.2950 4.7481 3.3101 3.1397 2.8477


Table 3: A posteriori error estimators and the effectivity index.
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