
Conference Applications of Mathematics 2012

in honor of the 60th birthday of Michal Kř́ı̌zek.
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Abstract

Balancing Domain Decomposition by Constraints (BDDC) belongs to the class
of primal substructuring Domain Decomposition (DD) methods. DD methods are
iterative methods successfully used in engineering to parallelize solution of large linear
systems arising from discretization of second order elliptic problems.

Substructuring DD methods represent an important class of DD methods. Their
main idea is to divide the underlying domain into nonoverlapping subdomains and
solve many relatively small, local problems on subdomains instead of one large problem
on the whole domain. In primal methods, it has to be specified how to distribute
interface residuals among subdomains and how to obtain global, interface values of
solution from local values on adjacent subdomains. Usually a weighted average is used
with some simple choice of weights.

In our paper we present numerical comparison of three different choices of interface
weights on test problem of 2D Poisson equation, with and without jumps in coeffi-
cients.

1. Introduction

The BDDC method introduced in [1] is one of the most popular substructuring
DD methods. It belongs to the wide class of the primal Neumann-Neumann domain
decomposition methods. As it has been recently shown in [4], a primal preconditioner
of such type is determined by the choice of two operators: the injection R and the
averaging E. These two operators appear also in the estimate of the condition
number of the preconditioned operator (see (4) bellow).

The choice of the operator R can be formulated as the choice of continuity con-
ditions across the interface (coarse unknowns). It is well-known that the choice of
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the operator R has a strong influence on the quality of the preconditioning. A lot
of work has been invested into research of relations between the choice of coarse
unknowns and the quality of preconditioning, and significant results were obtained
(e.g. in [2, 4]).

The averaging operator E seems to be aside from the main effort of the investi-
gation so far. Standard choices of E found already in [1] are arithmetic average and
average weighted by diagonal entries of matrices of local problems. Another recom-
mended choice of weights is a ratio of corresponding diagonal entries of local and
global Schur complements. However, often these values are not available, because
Schur complements are not computed explicitly in the most efficient implementations
of substructuring methods.

A more general framework for derivation of the averaging operator was introduced
in [5]. The standard choice of using diagonal entries of Schur complements mentioned
above can be regarded as one special case of it. In [5], two new variants derived
from the general framework were preliminarily tested on a test problem with two
subdomains, which led to promising results. However, in the case of two subdomains
only, there is no difference between global and local interface, so these results cannot
be regarded as typical. In this paper we use a test problem with four subdomains
and one cross-point.

We start with brief introduction into primal substructuring methods and BDDC
(detailed description with many references can be found in [3]) and description of dif-
ferent methods for averaging. Then numerical comparison of three averaging methods
follows: one of the new variants tested in [5] and two standard choices – arithmetic
average and average weighted by diagonal entries of Schur complements.

2. Reduction of the problem to the interface

Let us consider a boundary value problem with a self-adjoint operator defined on
a domain Ω ⊂ R2 or R3. If we discretize the problem by means of the standard finite
element method (FEM), we arrive at the solution of a system of linear equations in
the matrix form

Ku = f , (1)

whereK is large, sparse, symmetric positive definite (SPD) matrix and f is the vector
of the right-hand side.

Let us decompose the domain Ω into N non-overlapping subdomains Ωi, i =
1, . . .N . Unknowns common to at least two subdomains form the global interface.
Remaining unknowns are classified as belonging to subdomain interiors. The global
interface can be expressed as union of local interfaces, containing interface unknowns
involved just in subdomain Ωi.

The first step used in many domain decomposition methods including BDDC is
the reduction of the problem to the interface. Without loss of generality, suppose
that unknowns are ordered so that interior unknowns form the first part and the

interface unknowns form the second part of the solution vector, i.e. u =
[
uo û

]T
,
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where uo stands for all interior unknowns and û for unknowns at interface. Now,
system (1) can be formally rewritten to block form

[
Koo Kor

Kro Krr

] [
uo

û

]
=

[
fo

f̂

]
. (2)

The hat symbol (̂) is used to denote global interface quantities. If we suppose the
interior unknowns are ordered subdomain after subdomain, then the submatrix Koo

is block diagonal with each diagonal block corresponding to one subdomain.
After eliminating all the interior unknowns from (2), we arrive at Schur comple-

ment problem for the interface unknowns

Ŝ û = ĝ, (3)

where Ŝ = Krr − KroK
−1
oo Kor is the Schur complement of (2) with respect to the

interface and ĝ = f̂ − KroK
−1
oo fo is sometimes called condensed right-hand side.

Interior unknowns uo are determined by interface unknowns û via the system of
equations Koouo = fo−Korû, which represents N independent subdomain problems
with Dirichlet boundary condition prescribed on the interface and can be solved in
parallel. The main objective represents the solution of problem (3), which is solved
by the preconditioned conjugate gradient method (PCG).

3. Primal DD methods and BDDC

Historically, primal DD methods were used so that in every iteration a residual r̂
of (3) was computed and split into subdomains, then local problems were solved
and then the global solution on the interface was computed as a weighted average of
the local solutions. This can be written as Richardson iterations ûi+1 = ûi +Mr̂i,
where M stands for operator M = ES−1ET , with ET representing splitting of the
residual to subdomains, S−1 representing solution of subdomain problems, and E
representing projection of subdomain solutions back to the global problem by some
averaging.

Presently, primal DD methods are mostly used as preconditioners for problem (3)
within the PCG method. In every iteration of the PCG method, a preconditioned
residual is computed using the DD preconditioner M , which is realized by one step
of the corresponding DD method. The condition number κ of the preconditioned
operator MŜ is bounded by

κ ≤ ||RE||2S , (4)

where operator R splits the global interface into subdomains and the energetic norm
on the right-hand side is defined by the scalar product as ||u||2S = 〈Su, u〉. The
relationship (4) was proved in [4] assuming that ER = I, which means that if the
problem is split into subdomains and then projected back to the whole domain, the
original problem is obtained.
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If we use independent subdomain problems only (no continuity conditions across
the interface), the operator S is expressed by a block diagonal matrix S with diagonal
blocks Si representing local Schur complements on subdomains. Relationship be-
tween global and local problems can be expressed in matrix form as

Ŝ = RTSR =
∑

i

RiTSiRi , u = Rû , û = Eu, (5)

where Ri represents prolongation operator from local (subdomain) interface to the
global interface and E performs some averaging.

The main idea of the BDDC ([1]) is to introduce a global coarse problem in order
to achieve better preconditioning and to fix ‘floating subdomains’ by making their
local Schur complements invertible. The matrix S is then positive definite, but it
is not block diagonal any more, R now represents splitting of the global interface
into subdomains except the coarse unknowns, and ET distributes residual among
neighbouring subdomains only in those interface unknowns which are not coarse.
Thus in BDDC, only part of the global residual is split into subdomains; residual
at the coarse unknowns is left undivided and it is processed by the global coarse
problem. However, it still can be formally written like (5).

4. Choice of the averaging operator E

Standard choices of E are arithmetic average, average weighted by diagonal en-
tries of matrices of local problems or a ratio of corresponding diagonal entries of local
and global Schur complements.

General formula introduced in [5] for computing local weights αi
k in i-th subdo-

main is

αi
k = dT

k (RiTSiRi)dk /d
T
k Ŝ dk (6)

for some choice of a set of test vectors dk. One option is to choose all the cartesian
basis vectors ek, which leads to a standard choice of using diagonal entries of Schur
complements. Our proposition is to choose several test vectors with nonzero values
at some selected nodes only and obtain some average value for these nodes (typically
face or edge, or only part of it). In this paper we tested only one variant described
below.

Variant I (tailored for 2D problems)

Select all cross-points as coarse. Then for i-th subdomain, for every face Fij

between i-th and j-th subdomain, choose only one vector dj in formula (6), with
ones in positions corresponding to nodes belonging to face Fij and zeros elsewhere.
This leads to just one value of αi

j assigned to every interface node of the face Fij in
i-th subdomain.
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5. Numerical results

For numerical comparison of different methods of averaging, a 2D Poisson equa-
tion on a rectangular domain with homogeneous Dirichlet boundary condition on
the opposite sides was chosen. The methods were tested first on the equation with
constant coefficients and then on the equation with jump in the coefficients. Coeffi-
cients are prescribed as piecewise constant on subdomains with jump in the rate of
1:9 along the part of the interface parallel with y axis.

The problem was discretized by FEM using 35 bilinear elements. The FEM
solution is depicted in the left side of Figure 1. The domain was divided into four
rectangular subdomains different in size, all of which have one side formed by the part
of the boundary with prescribed Dirichlet boundary condition. Only one continuity
constraint across the interface was chosen: A coarse node in the cross-point of all
four subdomains. Solution in the space of functions continuous in this coarse node
only is depicted in the right side of Figure 1.
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Figure 1: Test problem. 2D Poisson equation, bilinear elements, 4 subdomains,
1 coarse node chosen as the cross-point of all the subdomains. Continuous solution
(left) and solution with discontinuities across the interface (right).

BDDC was used in two different ways: either as a preconditioner combined with
PCG, or as a Richardson iteration method. The second technique is not the standard
use of the BDDC method, we choose it just for testing the numerical properties of
different methods of averaging.

Three different methods for choice of the averaging operator E were tested:

a) Arithmetic average.

b) Weighted average using ratio of corresponding diagonal entries of local and
global Schur complements.

c) The variant of (6) described in section 4 as Variant I.

Table 1 contains results for BDDC used as a Richardson method, Table 2 for
standard BDDC as a preconditioner combined with PCG. In both tables there are
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without jumps in coefficients with jump in coefficients
arithm. av. diag. Sch. d = (1, ..1) arithm. av. diag. Sch. d = (1, ..1)
1.52 1.50 1.44 2.31e+01 1.18 1.16
3.78e–01 3.71e–01 3.54e–01 6.73e+01 2.68e–01 2.59e–01
9.36e–02 9.10e–02 8.61e–02 1.96e+02 6.86e–02 6.59e–02
2.32e–02 2.24e–02 2.10e–02 5.66e+02 1.96e–02 1.84e–02
5.76e–03 5.50e–03 5.17e–03 1.63e+03 5.64e–03 5.37e–03

Table 1: Errors in the first 5 iterations, BDDC used as Richardson method.
Poisson equation with constant coefficients (left) and with jump in coefficients along
the interface (right).

without jumps in coefficients with jump in coefficients
arithm. av. diag. Sch. d = (1, ..1) arithm. av. diag. Sch. d = (1, ..1)
1.27 1.26 1.22 6.32 1.05 1.03
1.36e–02 1.26e–02 1.83e–02 1.67 6.29e–02 6.10e–02
1.21e–03 1.13e–03 1.51e–03 1.21e–02 4.30e–04 5.05e–04
2.82e–06 2.48e–06 1.43e–06 2.60e–03 9.07e–07 1.07e–06
1.69e–09 1.51e–09 2.02e–09 5.64e–05 2.09e–10 4.24e–10

Table 2: Errors in the first 5 iterations, BDDC used as a preconditioner for PCG.
Poisson equation with constant coefficients (left) and with jump in coefficients along
the interface (right).

norms of errors (Euclidean norm of vector of differences from exact FEM solution at
nodes) at first 5 iterations as a measure of the rate of convergence. In the left part
of the tables there are results for equation without jump in coefficients, in the right
part there are results for the jump.

Results show superiority of preconditioned PCG over Richardson iterations as
expected.

As for comparison of the three methods of averaging, for equation without jump
in coefficients (the first three columns of the tables), all three methods give very
similar rate of convergence in both ways BDDC was used. If we look at the slight
differences, we can see that if Richardson iteration is used, method c) gives the best
results and method a) the worst ones in every iteration, while if PCG is used, rating
of the methods changes in every iteration so it is difficult to decide which one is best.

However, for equation with jump in coefficients (the last three columns of the ta-
bles), there is remarkable difference between the arithmetic average a) and the other
two methods. In Richardson iteration the method a) does not lead to convergence at
all and in combination with PCG it leads to remarkably slower convergence than the
other methods. The other two methods are mutually comparable, method c) gives
slightly better results in Richardson iteration and method b) is better in combination
with PCG.
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6. Conclusions

We compared three different methods of averaging in BDDC method: two stan-
dard ones (arithmetic average and weighted average using ratio of corresponding
diagonal entries of local and global Schur complements) and one based on the new
proposition (6). A simple test of Poisson equation in 2D indicates that there is no
essential difference among the methods if there are no jumps in coefficients. On
the other hand, if there is a jump along the interface, arithmetic average performs
significantly worse than either one of the other two methods, which are mutually
comparable.

It seems that without presence of jumps in coefficients, the method of choice
is using arithmetic averages, because it is the simplest and also cheapest approach
to implementation. If the problem involves jumps in coefficients aligned to subdo-
main boundaries, the choice of weighted averages based on diagonals of the Schur
complements and the new approach seems equally efficient. In the most efficient
implementations, the Schur complements are not computed explicitly, and so the
new approach seems preferable. However, numerical results presented in this paper
are just preliminary and need to be confirmed by results for problems involving large
number of subdomains. We plan to perform such experiments in future.
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