
A curious property of oscillatory FEM solutions of
one-dimensional convection-diffusion problems

Martin Stynes

Mathematics Department
National University of Ireland, Cork

AM2012 (Michal Kř́ıžek 60)
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The convection-diffusion problem

Two-point boundary value problem

−εu′′ + au′ + bu = f on (0, 1), u(0) = u(1) = 0,

where the parameter ε satisfies 0 < ε ≪ 1,
while a, b, f ∈ C [0, 1] with a > 0 and b ≥ 0.

Problems such as this, where convection dominates diffusion,
typically have solutions that are well-behaved away from x = 1 but
near x = 1 change rapidly.
We say that the solution has a boundary layer at x = 1.
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Our generic example
All figures are for the particular example

−εu′′ + u′ = x on (0, 1), u(0) = u(1) = 0,

with ε = 5× 10−3.
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Weak form, trial and test spaces Vh

Weak form of problem: find u ∈ H1
0 (0, 1) satisfying

∫ 1

0
[εu′(x)v ′(x) + a(x)u′(x)v(x) + b(x)u(x)v(x)] dx

=

∫ 1

0
f (x)v(x) dx ∀v ∈ H1

0 (0, 1).

Mesh is 0 = x0 < x1 < x2 < · · · < xN = 1.

Assume N ≪ ε−1.

For i = 1, 2, . . . ,N − 1, let φi ∈ C [0, 1] be the standard finite
element piecewise linear function that satisfies φi (xj) = δij and
support φi = [xi−1, xi+1].
Set Vh = span {φ1, φ2, . . . , φN−1}, so Vh ⊂ H1

0 (0, 1).



Piecewise linear Galerkin finite element method

P.w.linear Galerkin finite element solution uh ∈ Vh defined by:

∫ 1

0
[εu′h(x)φ

′

i (x) + aiu
′

h(x)φi (x) + biuh(x)φi (x)] dx

=

∫ 1

0
f (x)φi (x) dx for i = 1, 2, . . . ,N − 1.

Nonstandard quadrature rule: a(x) and b(x) replaced by constants
ai := a(xi) and bi := b(xi ) associated with test function φi in order
to generate finite difference scheme having a certain structure.

This is the only numerical method considered in this talk; we shall
apply it to various problems.



Computed solution on a uniform mesh with N ≪ ε
−1
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Adding a point to the mesh

SYZ07 modify the uniform mesh in the Galerkin method by adding
a mesh point (arbitrarily chosen) to the mesh interval (0.9, 1)
where the boundary layer lies.

Next two figures show the computed solutions when the additional
mesh points are 0.92 and 0.95 respectively.



Computed solution with additional mesh points 0.92, 0.95
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SYZ07 idea: superimpose these three computed solutions
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Blow-up of part of previous graph
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All computed solutions intersect at points that are independent of
where one adds mesh point(s) in (0.9, 1)



True solution and 3 computed solutions
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Blow-up of part of previous graph
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Same behaviour occurs for all N and ε (provided N ≪ ε−1) and
when other convection-diffusion test problems are considered.



Theoretical explanation

SYZ07 give a complete theoretical explanation of the two
phenomena that we observed:

1. Common intersection points of all piecewise linear Galerkin
solutions when extra mesh point(s) are added inside the mesh
interval containing the layer

2. These common intersection points lie close to the true solution

But their analysis is only for the special case where a(·) is constant
and b(·) ≡ 0
—and it is complicated.
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{un+1

i , i = 1, . . . , n; un+1
s1

} given by
(3.1)
n−1∑

i=1

un+1

i a(φi, φj) + un+1
n a(φ̃n, φj) + un+1

s1
a(φs1

, φj) = (f, φj), j = 1, 2, . . . , n − 1,

(3.2)

n−1∑

i=1

un+1

i a(φi, φ̃n) + un+1
n a(φ̃n, φ̃n) + un+1

s1
a(φs1

, φ̃n) = (f, φ̃n),

and

(3.3)

n−1∑

i=1

un+1

i a(φi, φs1
) + un+1

n a(φ̃n, φs1
) + un+1

s1
a(φs1

, φs1
) = (f, φs1

).

Note that for 1 ≤ j ≤ n − 1, a(φ̃n, φj) = a(φn, φj) and a(φs1
, φj) = 0, and (3.1)

leads to

(3.4)
n∑

i=1

un+1

i a(φi, φj) = (f, φj), j = 1, 2, . . . , n − 1.

On the other hand, for 1 ≤ i ≤ n − 1, a(φi, φ̃n) = a(φi, φn), and (3.2) yields

(3.5)
n−1∑

i=1

un+1

i a(φi, φn) + un+1
n a(φ̃n, φ̃n) = (f, φ̃n) − un+1

s1
a(φs1

, φ̃n).

For 1 ≤ i ≤ n − 1, a(φi, φs1
) = 0, so it follows from (3.3),

(3.6) un+1
n a(φ̃n, φs1

) = (f, φs1
) − un+1

s1
a(φs1

, φs1
).

Let p = (1 − s)/hn+1. Observe φn = φ̃n + pφs1
. Combining two equations above

according to (3.5)+p∗(3.6), we have

(3.7)

n−1∑

i=1

un+1

i a(φi, φn) + un+1
n a(φ̃n, φn) = (f, φn) − un+1

s1
a(φs1

, φn).

Hence,

n∑



Simpler proof of common intersection points (general a, b)

Solve problem using the piecewise linear Galerkin method on a
uniform mesh with N subintervals, where N ≪ ε−1. Set h = 1/N.
Denote the computed solution by uh ∈ C [0, 1].

Boundary layer lies in the interval (1− h, 1) because N ≪ ε−1.

Introduce an arbitrary additional mesh point (or points) in the
interval (1− h, 1). Let ûh denote the piecewise linear Galerkin
solution computed on this modified mesh.

We shall show that uh = ûh at one intersection point in each
interval (h, 2h), (2h, 3h), . . . , (1− 2h, 1 − h); furthermore, these
intersection points are independent of the additional mesh point(s)
in (1− h, 1).
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What are we solving on [0, 1− h]?

Each mesh is uniform on [0, 1 − h].
On the interval [0, 1− h], the computed solution uh is the piecewise
linear Galerkin solution of the two-point boundary problem

−εv ′′+av ′+bv = f on (0, 1−h); v(0) = 0, v(1− h) = uh(1− h),

and the computed solution ûh is the piecewise linear Galerkin
solution of the boundary value problem

−εw ′′+aw ′+bw = f on (0, 1−h); w(0) = 0, w(1− h) = ûh(1− h).

Consequently their difference uh − ûh is the piecewise linear
Galerkin solution of the boundary value problem

−εz ′′ + az ′ + bz = 0 on (0, 1 − h),

z(0) = 0, z(1− h)= uh(1− h)− ûh(1− h).
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and the computed solution ûh is the piecewise linear Galerkin
solution of the boundary value problem

−εw ′′+aw ′+bw = f on (0, 1−h); w(0) = 0, w(1− h) = ûh(1− h).
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Lemma (to be proved later)

On the mesh {0, h, 2h, . . . , 1− h}, p.w.linear Galerkin solution of

−εζ ′′ + aζ ′ + bζ = 0 on (0, 1 − h), ζ(0) = 0, ζ(1− h) = 1

has a zero in each interval (h, 2h), (2h, 3h), . . . , (1− 2h, 1− h) and
is otherwise non-zero in (0, 1− h]. Example with h = 1/10:
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These zero points will be the intersection points that we seek.



uh = ûh at a set of points that is independent of [1− h, 1]

Consequently uh − ûh, which is the p.w. linear Galerkin solution of

−εz ′′ + az ′ + bz = 0 on (0, 1 − h),

z(0) = 0, z(1− h) = uh(1− h)− ûh(1− h),

also equals zero at these points,
i.e., uh = ûh at these intersection points.

Note also that the intersection points depend only on the problem

−εζ ′′ + aζ ′ + bζ = 0 on (0, 1 − h), ζ(0) = 0, ζ(1− h) = 1

so they are independent of the mesh on [1− h, 1].
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i.e., uh = ûh at these intersection points.

Note also that the intersection points depend only on the problem

−εζ ′′ + aζ ′ + bζ = 0 on (0, 1 − h), ζ(0) = 0, ζ(1− h) = 1

so they are independent of the mesh on [1− h, 1].



Lemma
Consider the two-point boundary value problem

−εζ ′′ + aζ ′ + bζ = 0 on (0, 1 − h), ζ(0) = 0, ζ(1− h) = 1.

Subdivide the interval [0, 1 − h] by a uniform mesh with intervals
of width h and assume that

min
[0,1]

(
a

2
−

∣∣∣∣
hb

6
−

ε

h

∣∣∣∣
)

> 0. (1)

Then the p.w. linear Galerkin solution of this problem oscillates
about zero, i.e., the computed solution equals zero at one point in
each of the mesh intervals (h, 2h), (2h, 3h), . . . , (1 − 2h, 1− h)
and is otherwise non-zero in (0, 1− h].



Proof of Lemma

Let g ∈ C [0, 1 − h] denote the piecewise linear Galerkin solution of
the given problem on the given mesh. The difference scheme
defining the nodal values of g is (because of our quadrature rule)

−
ε

h2
(
gi+1−2gi+gi−1

)
+
ai(gi+1 − gi−1)

2h
+
bi
6
(gi+1+4gi+gi−1) = 0

for i = 1, . . . ,N − 2, with g0 = 0 and gN−1 = 1, where gj := g(jh)
for all j . This scheme can be rewritten as

(
ai
2h

+
bi
6
−

ε

h2

)
gi+1+

(
4bi
6

+
2ε

h2

)
gi+

(
−

ai
2h

−
ε

h2
+

bi
6

)
gi−1 = 0

for i = 1, . . . ,N − 2.
The hypothesis (1) ensures that the coefficients of gi+1 and gi are
positive but the coefficient of gi−1 is negative.



Proof of Lemma (continued)

Write the scheme as

αigi+1 + βigi − γigi−1 = 0, with g0 = 0, gN−1 = 1 (2)

and αi > 0, βi > 0, γi > 0.
The solution of this difference scheme cannot have g1 = 0 because
then taking i = 1 would imply that g2 = 0, and a similar inductive
argument then leads to gN−1 = 0 which is false. Thus g1 6= 0.

If g1 > 0, then taking i = 1 in (2) and recalling the signs of the
coefficients there and g0 = 0, we see that g2 < 0. Similarly, g1 < 0
implies that g2 > 0. Thus in all cases one has g1g2 < 0. One can
now proceed inductively, invoking (2) for i = 2, 3, . . . ,N − 2 and
using the signs of its coefficients, to get gigi+1 < 0 for each i . The
desired result follows.
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Accuracy of computed solution at the intersection points

Theorem
Subdivide [0, 1] by a uniform mesh of width h. Assume that
h ≥ ε | ln ε| and that (1) is satisfied. Then the piecewise linear
Galerkin solution uh of the original two-point boundary value
problem on the mesh {0, h, 2h, . . . , 1− h, 1} satisfies

|u(ζi)− uh(ζi)| ≤ Ch2 for i = 2, 3, . . . ,N − 1,

where the ζi are the intersection points and the constant C is
independent of ε and h.



Proof of Theorem

Since h ≥ ε | ln ε|, one can insert extra mesh points in the interval
(1− h, 1) to construct a Bakhvalov mesh for the original problem.
It follows from work of Andreev and Kopteva that the piecewise
linear Galerkin solution uB on the Bakhvalov mesh satisfies
max[0,1] |u(x)− uB(x)| ≤ Ch2 for some constant C .
In particular this implies that |u(ζi )− uB(ζi )| ≤ Ch2 for each i
(since (1) holds true by hypothesis, our Lemma is valid and
consequently the ζi are well defined). But our earlier analysis
showed that uh(ζi) = uB(ζi ) for each i , so we are done.

Remark
The idea of this proof comes from SYZ07. But the Andreev and
Kopteva result is valid only for certain difference schemes including
our scheme — this motivates the unusual quadrature rule that we
introduced into the Galerkin method (this quadrature rule does not
appear in SYZ07 because only the case a(·) constant and b ≡ 0 is
considered there).
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Numerical method

Corollary

The piecewise linear interpolant ũh of uh(ζi ), i = 2, . . . ,N − 1,
satisfies

‖u − ũh‖L∞[0,1−ζN−1] ≤ Ch2.

See conference proceedings paper for a numerical example.
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