
Conference Applications of Mathematics 2012

in honor of the 60th birthday of Michal Kř́ı̌zek.
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Abstract

We give a survey of the joint papers of Lawrence Somer and Michal Kř́ıžek and

discuss the beginning of this collaboration.

1. Introduction

In the fall of 1999, I was in Prague on a one-year sabbatical from The Catholic
University of America in Washington, D.C., and was teaching a course entitled ”Pri-
mality Testing and Its Application to Cryptography” at the Faculty of Mathematics
and Physics of Charles University. At the same time I met Florian Luca in Prague,
whom I knew from the Fibonacci Conferences. He was preparing with Michal Kř́ıžek
the book, 17 Lectures on Fermat Numbers. Michal had been interested in the topic
of Fermat numbers since he wrote a paper with Jan Chleboun for Mathematica
Bohemica in 1994 on Fermat numbers. In November 1998, Florian Luca submit-
ted a paper related to Fermat numbers also to Mathematica Bohemica for which
Michal was the referee. Subsequently Michal invited Florian to visit the Institute
of Mathematics in Prague in 1999–2000. While visiting Florian at the Institute, he
introduced me to Michal, and soon after this, both asked me if I wanted to be a third
coauthor of this book. After some thought, I agreed. Thus began my fruitful 12-year
collaboration with Michal that has resulted in 30 joint papers and 2 books, primarily
in the field of number theory and combinatorics (see [1]–[32]).

Our papers were written in four languages – English, Czech, Spanish, and Chi-
nese. As far as I know, Michal has also published papers in the six additional
languages of Russian, German, Finnish, Dutch, Slovak, Serbo-Croatian.

2. Some of our most notable results

2.1. Euclidean primes

Euclid’s theorem on the infinitude of primes is usually proved by a contradiction
argument. It is assumed that there are only finitely many primes p1, p2, . . . , pn and
then it is shown that
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m = p1p2 · · · pn + 1 (1)

is a new prime or m has a new prime factor different from p1, p2, . . . , pn, which is
a contradiction.

Therefore, primes of the form (1) are called Euclidean primes. For instance,

2+1 = 3, 2 ·3+1 = 7, 2 ·3 ·5+1 = 31, 2 ·3 ·5 ·7+1 = 211, 2 ·3 ·5 ·7 ·11+1 = 2311

are Euclidean primes, but the next term

2 · 3 · 5 · 7 · 11 · 13 + 1 = 59 · 509

is composite.
Let p be a prime and let a be a natural number coprime to p. Then by Fermat’s

little theorem
ap−1 ≡ 1 (mod p).

We call the integer a 6≡ 0 (mod p) a primitive root modulo p if

ak 6≡ 1 (mod p)

for all k ∈ {0, 1, . . . , p−2}. For example, 3 is a primitive root modulo 5, since 3k 6≡ 1
(mod 5) for all k = 1, . . . , 3 (and 34 ≡ 1 (mod 5) by Fermat’s little theorem).

Denote by A(p) the number of primitive roots modulo prime p. In [20] we proved
that Euclidean primes have the minimum possible number of primitive roots.

Theorem 1. If p is a Euclidean prime, then for all primes q < p we have

A(q)

q
>

A(p)

p
.

2.2. Fermat primes

Recall that
Fm = 22

m

+ 1 for m = 0, 1, 2, . . . (2)

are called Fermat numbers. If Fm is prime it is termed a Fermat prime. For instance,

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537, (3)

are Fermat primes, but F5 is composite.
As contrasted to Euclidean primes which have the minimum possible number of

primitive roots, it is well known that Fermat primes have the maximum possible
number of primitive roots, namely (Fm − 1)/2 (for a proof of this results see [16]
or [3, p. 51]).

Leonhard Euler proved that any divisor of Fm > 3 is of the form k2m+1 + 1.
Édouard Lucas refined this result by showing that each divisor of Fm > 5 is of the
form k2m+2 + 1. In [3], we proved the following result.

Theorem 2. If k2m+2 + 1 is a prime divisor of a composite Fermat number Fm,
where k = 3, 5 or 6, then Fm has no prime divisor of the form ℓ2m+2 + 1, where
1 ≤ ℓ < k, and k2m+2 + 1 is the smallest prime divisor of Fm.
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2.3. Mersenne and Sophie Germain primes

In [19] we provided a relationship between Mersenne and Sophie Germain primes
(see Theorem 3 below). Recall that the number Mp = 2p − 1, where p is prime, is
termed a Mersenne number. If 2p − 1 itself is prime, then it is called a Mersenne
prime. In particular, if

p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, . . .

we get a Mersenne prime.
In 1819, the French mathematician Sophie Germain demonstrated that if p and

2p+ 1 are both prime, then the so-called first case of Fermat’s Last Theorem holds
for the exponent p. Odd primes p for which 2p + 1 is also a prime are thus called
Sophie Germain primes. For example 5, 11, and 23 are Sophie Germain primes.

Furthermore, we examine some connections of number theory with graph theory.
We assign to each pair of positive integers k ≥ 2 and n a digraph G(n, k) whose set
of vertices is H = {0, 1, . . . , n − 1} and for which there exists a directed edge from
a ∈ H to b ∈ H if ak ≡ b (mod n). The cycles of length q are said to be q-cycles.
All cycles are assumed to be oriented counterclockwise (see Figure 1 for n = 47).
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Figure 1: Iteration digraph corresponding to n = 47.

In [19] we proved the following relatively simple statements.

Theorem 3. Let Mq be a Mersenne prime with q > 2. Then there does not exist
a Sophie Germain prime p such that G(2p+ 1, 2) contains a q-cycle.

We proved the following characterization of Sophie Germain primes.

Theorem 4. Let p be a Sophie Germain prime. Then G(2p + 1, 2) has two trivial
components: the isolated fixed point 0 and the component {1, 2p} having the fixed
point 1. Each of the other components has 2t vertices and contains a t-cycle. The
number of directed edges coming into a vertex of a t-cycle is exactly 2.
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See Figure 1 for the iteration digraph G(2p + 1, 2), where p = 23 is a Sophie
Germain prime.

If the quadratic congruence

x2 ≡ a (mod p)

has no solution x then a is said to be a quadratic nonresidue modulo p.

Theorem 5. Let p be a Sophie Germain prime. Then all quadratic nonresidues are
primitive roots modulo 2p+1, except for exactly one number 2p, which is a quadratic
nonresidue, but not a primitive root.

2.4. Semiregular iteration digraphs modulo n

The indegree of a vertex a ∈ H of G(n, k) is the number of directed edges coming
into a. The digraph G(n, k) is said to be semiregular if there exists a positive integer
d such that each vertex of the digraph has indegree d or 0.

Figure 2: The semiregular iteration digraph G(16, 2).

By Figure 2 we see that G(16, 2) is semiregular. In Theorem 6 which was proved
in [30], we characterize the structure all semiregular digraphs G(n, k).

We use the notation
∏

0

i=1
ai to denote that the corresponding product is empty

and set equal to 1 by convention.

Theorem 6. Let k ≥ 2 be a fixed integer with the factorization

k = Q

ℓ∏

i=1

pαi

i ,

where each pi is a prime such that gcd(pi − 1, k) = 1 and in addition, ℓ ≥ 1, αi ≥ 1,
and gcd(q − 1, k) > 1 for each prime q dividing Q. Let n ≥ 2 have the prime power
factorization

n = S

ℓ∏

i=1

pβi

i

m∏

i=1

qγii ,

where βi ≥ 0, m ≥ 0, γi ≥ 1, gcd(qi(qi − 1), k) = 1 for i = 1, 2, . . . , m, and
gcd(t− 1, k) > 1 for each prime t dividing S.

Then G(n, k) is semiregular if and only if one of the following conditions holds:
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(a) n =
∏ℓ

i=1
pβi

i

∏m
i=1

qi for 0 ≤ βi ≤ αi + 1 and m ≥ 0 when pi is odd for each
i ∈ {1, 2, . . . , ℓ},

(b) n = 2β1 for β1 ∈ {1, 2, 4} when k = 2,

(c) n = 2β1 for 1 ≤ β1 ≤ 5 when k = 22,

(d) n = 2β1 for 1 ≤ β1 ≤ α1 + 2 when p1 = 2 and k ≥ 6.

2.5. Symmetric iteration digraphs modulo n

A component of the iteration digraph is a subdiagraph which is a maximal con-
nected subgraph of the associated nondirected graph. The digraph G(n, k) is sym-
metric of order M if its set of components can be partitioned into disjoint subsets,
each containing exactly M isomorphic components.

By Figure 3, the digraph G(39, 3) is symmetric of order 3. Before proceeding
further, we need to define the Carmichael lambda-function λ(n).
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Figure 3: The symmetric iteration digraph G(39, 3) of order 3.

Definition 1. Let n be a positive integer. Then the Carmichael lambda-function
λ(n) is defined as follows:

λ(1) = λ(2) = 1,

λ(4) = 2,
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λ(2k) = 2k−2 for k ≥ 3,

λ(pk) = (p− 1)pk−1 for any odd prime p and k ≥ 1,

λ(pk11 pk22 · · · pkrr ) = lcm[λ(pk11 ), λ(pk22 ), . . . , λ(pkrr )],

where p1, p2, . . . , pr are distinct primes and ki ≥ 1 for all i ∈ {1, . . . , r}.

In Theorem 7 which was proved in [31], we give several sufficient conditions for
a digraph G(n, k) to be symmetric of order M ≥ 2.

Theorem 7. Let n = n1n2, where n1 > 1, n2 ≥ 1, and gcd(n1, n2) = 1.

(i) Suppose that n1 = pα, where p is an odd prime and α ≥ 1. Suppose further
that k ≡ 1 (mod p− 1) and pα−1 | k. Then G(n, k) is symmetric of order p.

(ii) Suppose that n1 = 2α, where α ≥ 1. Then G(n, k) is symmetric of order 2 if
one of the following conditions holds:

(a) α ≤ 2, k ≥ 2, and 2α−1 | k,

(b) α ≥ 3, k > 2, and 2α−2 | k,

(c) α = 4 and k = 2.

(iii) Suppose that n1 = q1q2 · · · qs, where the qi’s are distinct primes, not necessarily
odd, and s ≥ 2. Suppose that k ≡ 1 (mod λ(n1)). Then G(n, k) is symmetric
of order n1.

(iv) Suppose that n1 = pαq1q2 · · · qs, where p is an odd prime, α ≥ 2, s ≥ 1, and
the qi’s are distinct primes such that p 6= qi and p ∤ qi − 1 for i = 1, 2, . . . , s.
Suppose further that k ≡ 1 (mod λ(pq1q2 · · · qs)) and pα−1 | k. Then G(n, k) is
symmetric of order pq1q2 · · · qs.

2.6. Elite primes

Motivated by a generalization of the Pepin primality test (see [3, pp. 42–43])
for Fermat numbers (2), Aigner introduced the notion of elite primes which are the
primes p such that Fm is a quadratic nonresidue modulo p for all but finitely manym.
For example, 3, 5, 7, and 41 are elite primes. Denoting by E the set of all elite primes,
the following statement holds (see [4]):

Theorem 8. The series
∑

p∈E

1

p

is convergent.

Note that
∑

p∈P
1

p
over the set P of all primes is divergent.
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Since the sequence of Fermat numbers is eventually periodic modulo any prime p
with at most p distinct elements in the image, the period length tp is bounded
by p and the number of arithmetic operations modulo p to test p for being elite is
bounded by O(p log p). In [2] (published in Journal of Integer Sequences) we showed
that tp = O(p3/4), in particular improving the estimate tp ≤ (p + 1)/4 of Müller
and Reinhart in 2008. The same order of magnitude O(p3/4) is also derived for the
so-called anti-elite primes which are introduced in [2]. This paper generalizes some
of our previous paper [4] published in Journal of Number Theory.

2.7. Šindel sequences

In [10] we found that there is a remarkable relationship between the triangular
numbers Tk = 1+ 2+ · · ·+ k and the bellworks of the astronomical clock (horologe)
of Prague.

Figure 4: The number of bell strokes is denoted by the numbers . . . , 9, 10, 11, 12,
13, . . . along the large gear. The small gear placed behind it is divided by slots into
segments of arc lengths 1, 2, 3, 4, 3, 2.

When the small gear of the bellworks revolves (see Figure 4) it generates by means
of its slots a periodic sequence whose particular sums correspond to the number of
strokes of the bell at each hour:

1 2 3 4 3 2
︸︷︷︸

5

1 2 3
︸ ︷︷ ︸

6

4 3
︸︷︷︸

7

2 1 2 3
︸ ︷︷ ︸

8

4 3 2
︸ ︷︷ ︸

9

1 2 3 4
︸ ︷︷ ︸

10

3 2 1 2 3
︸ ︷︷ ︸

11

4 3 2 1 2
︸ ︷︷ ︸

12

3 4 3 2 1
︸ ︷︷ ︸

13

2 3 4 3 2
︸ ︷︷ ︸

14

1 2 3 4 3 2
︸ ︷︷ ︸

15

. . . (4)

The mathematical model of the astronomical clock of Prague was probably in-
vented by Jan Šindel around 1410. In honor of this great achievement we introduced
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in [10] a new term, the Šindel sequence {ai} ⊂ N of natural numbers as such a pe-
riodic sequence with period p that satisfies the following condition: for any k ∈ N
there exists n ∈ N such that

Tk = a1 + · · ·+ an. (5)

This condition guarantees a functioning of the bellworks, which is controlled by the
horologe (for details see [10]). In [10] we made a systematic investigation of Šindel
sequences.

In the next theorem from [10] we show that we could continue in (4) indefinitely
in this way. Let

s =

p
∑

i=1

ai.

Theorem 9. A periodic sequence {ai} for s odd is a Šindel sequence if (5) holds for
k = 1, 2, . . . , (s− 1)/2.

In [10] we, moreover, give a necessary and sufficient condition for a periodic
sequence to be a Šindel sequence. We also present an algorithm which produces
the so-called primitive Šindel sequence, which is uniquely determined for a given
s = a1 + · · ·+ ap.

3. Our monographs

In 2001, Michal, Florian Luca, and I published the book 17 Lectures on Fermat
numbers [3] in honor of the 400th anniversary of Fermat’s birth. The book had
3 authors, took 5 years to prepare, consisted of 17 lectures, had 257 pages, and
hopefully will make USD 65 537 in royalties (compare with (3)). This book contains
a lot of known results, but some theorems are also ours. Its second edition appeared
in 2011.

In 2009, Michal, Alena Šolcová, and I published another book Kouzlo č́ısel [26]
(Magic of numbers). This book won the Josef Hlávka Prize for the best scientific book
published in the Czech Republic in 2009 in the category of the science of inanimate
nature. The second edition of this book appeared in 2011.

Finally, let us mention one interesting result from [26]. Magic squares consisting
solely of primes have been of considerable interest. Based on the Green-Tao theorem,
which states that there are arithmetic progressions of arbitrary length containing only
primes, we proved the following statement.

Theorem 10. For any natural number n there exists a magic square of order n
containing only primes.

This theorem can be easily generalized to any set that contains arithmetic pro-
gressions of arbitrary length.
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4. Closing remark

It has been a fruitful twelve years of collaboration with Michal and I look forward
to many more years of joint research.
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